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CHAPTER 1 

SUMMARY 

 

This thesis examines the effects of 3 selected pesticides on a model freshwater food 

chain of a producer and consumer. Chapter 2 reviews the specific features of the 

Australian environment and why native Australian species should be used in 

evaluating the effects of toxicants to Australian biota, especially the effects of 

pesticides. Toxicity of the herbicide glyphosate (two formulations – technical grade 

and Roundup Biactive RB) and insecticide chlorpyrifos CPF to aquatic biota are 

examined. The importance of studying the toxicity of low (environmentally realistic) 

concentrations of pesticides to non-target organisms is introduced. Based on these the 

aims of the project are specified. 

 

Chapters 3.1 and 3.2 are literature reviews on the toxicity of glyphosate and 

chlorpyrifos to aquatic organisms. 

 

In Chapter 4 the requirements for the maintenance of algal and Daphnia carinata 

cultures are presented. Three species of algae were used in various experiments and 

for maintenance of D. carinata cultures: Chlorella vulgaris, Chlorella pyrenoidosa 

and Pseudokirchneriella subcapitata. Batch cultures were used for maintenance of the 

algae, grown in flasks on a light-table. Sub-culturing was conducted once a week or as 

required. Two media were used for maintenance of these cultures: Tamiya (Vasser 

1989) and Keating (1985). The most widespread daphnid in Australia, D. carinata is 

considered to be one of the most suitable for toxicity testing of contaminants entering 

Australian freshwaters. Little data is available on the culture requirements of the 
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species, and this chapter evaluates the efficacy of different food types for culture of D. 

carinata. Different types of food were tested: Chlorella vulgaris cultured in two 

different media - Keating and Tamiya, Chlorella pyrenoidosa cultured in the same 

two media, and a suspension of trout pellets. Intrinsic rates of natural increase of 

individual cultures of D. carinata were determined from "life tables". The best food 

from among those tested in terms of providing adequate survival and fecundity of D. 

carinata were C. pyrenoidosa cultured in either Keating or Tamiya medium. Two 

different procedures of individual cultures are proposed for the maintenance of D. 

carinata for use in toxicity testing using different culture volumes. 

 

In Chapter 5 the results of a series of 72-h toxicity tests with algae are presented. The 

effects of two formulations of the herbicide glyphosate (technical grade and Roundup 

Biactive®) and the insecticide chlorpyrifos on the growth of Chlorella pyrenoidosa 

and Pseudokirchneriella subcapitata were studied, and the EC50 values determined. 

With glyphosate and Roundup Biactive® the 72-h EC50 were: C. pyrenoidosa = 788 

and 763 mg/L, and P. subcapitata = 429 and 397 mg/L, while hormesis was observed 

when P. subcapitata was exposed at concentrations equal to 7% and 4% of EC50 

respectively. No such effect was noted for C. pyrenoidosa, although it is possible that 

this effect may be present at very low concentrations, which were not tested in this 

study. For chlorpyrifos the 72-h EC50 was well above environmentally realistic 

concentrations for both algae (3736 for C. pyrenoidosa and 2060 µg/L for P. 

subcapitata). However at concentrations 0.3-5 µg/L (with a maximum at 0.06% of 

EC50) hormesis was observed for both species, where growth rate exceeded that of 

control by as much as 20% for C. pyrenoidosa and 40% for P. subcapitata.  P. 
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subcapitata was more sensitive to all toxicants tested, and it was recommended as a 

test species for pesticides in preference to C. pyrenoidosa. 

 

In Chapter 6 the effects of sublethal concentrations of chlorpyrifos (ranging from 

0.005 µg/L (‘0.01 LC50’) to 0.500 µg/L (‘1 LC50’)) on population characteristics of 

individual culture of Daphnia carinata were investigated over 21 days with 

subsequent testing of the next two generations. The endpoints for the first and second 

generations observed were: survival, fecundity, time to first brood and number of 

offspring per female. The results were incorporated into the computation of the 

intrinsic rate of natural increase for daphnids in each of the treatments. Exposure to 

chlorpyrifos affected survival and fecundity of animals in the first generation. In the 

second generation the most affected endpoint was time to the first brood with an 

indication of hormesis. LC50 tests were then conducted using animals of the third 

generation from each of the exposures in individual tests. Despite the absence of a 

negative effect of chlorpyrifos in the second generation, results of testing the third 

generation showed a constant significant decline in LC50 in the order of control 

daphnids through to ‘0.1 LC50’ pre-exposed daphnids (‘0.1 LC50’, or 0.05 µg/L being 

the highest concentration in which animals survived exposure to the toxicant in the 

second generation). 

 

In Chapter 7.1 the long-term toxicity of glyphosate (technical grade and formulation 

Roundup Biactive) to three successive generations of D. carinata was investigated. 

The experimental protocol was the same as for chlorpyrifos testing (Chapter 6). 

Glyphosate was tested in two different media: sea salt solution and M4 medium 

specially designed for daphnids, while Roundup Biactive was tested in M4 medium. 
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Results indicated that glyphosate and Roundup Biactive had relatively low toxicity to 

Daphnia. Hormesis was evident in sea salt medium exposures in the first and second 

generations of daphnids with technical grade glyphosate. When exposed to glyphosate 

and Roundup Biactive in M4 medium animals showed no indication of hormesis. It is 

hypothesized that glyphosate may have compensated for the lack of microelements in 

the sea salt medium, and possible mechanisms discussed. 

 

In Chapter 7.2 the modifying effect of glyphosate on the toxicity of cadmium to 

Daphnia carinata was studied in long-term (21 days) exposures with two generations 

of cladoceran. It was found that low concentration of glyphosate (in the form of 

Roundup Biactive [RB]) reduces toxicity of Cd, and the performance of daphnia is 

enhanced in terms of animals’ size, survival, fecundity, and consequently the intrinsic 

rate of natural increase in both generations of animals in the presence of glyphosate. 

However when the third generation was tested for their sensitivity to Cd in the 48-h 

LC50 experiments there was no difference between RB-free and RB-spiked treatments 

in pair wise comparison, indicating that no adaptation mechanisms were involved in 

the enhancement. 

 
In Chapter 8 the overall discussion of the results with respect to observed hormesis is 

presented. The implications for the effects of the pesticides on environmental 

freshwater food chains are discussed and recommendations on modifying pesticide 

use are provided. 
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CHAPTER 2 

INTRODUCTION 

 

2.1 STATE OF THE AUSTRALIAN ENVIRONMENT 

 

Among the inhabited continents Australia is the driest with over 80% of its land 

having an average rainfall of less than 600 mm/year. Large variations in climate and 

rainfall throughout Australia result in a great range of natural environments - from 

temperate south to tropical north with vast arid regions in the centre. Australia's 

inland aquatic ecosystems provide resources for multiple uses such as agriculture and 

industry and other human activities (potable water, fishing, recreation etc). To 

maintain the health of the aquatic environment it is essential to review the available 

knowledge on the current state of the environment, real and predicted impacts due to 

natural processes and human involvement, and based on such data to develop  

management tools to minimise the impact and its consequences.  

 

The key findings of Australia: State of the Environment 1996 (State of the 

Environment Advisory Council 1996) highlighted that Australia's inland waters are 

under increasing pressure from over-extraction, pollution, algal blooms, catchment 

modification, habitat destruction and flow regulation. Since 1996, the pressures on 

many inland waters have increased, with a substantial increase in water extraction, 

continued clearing of catchment and riparian vegetation, increases in the area of land 

affected by dryland salinity and increases in pesticide use (Australia: State of the 

Environment 2002).  
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According to Australia: State of the Environment 2001 Report ‘the total water use in 

Australia for 1996/97 was 24 100 GL (NLWRA 2001), an increase of 65% from 1985 

(AWRC 1987). Seventy-nine per cent of water was extracted from surface waters (19 

100 GL), while 21% was extracted from groundwater resources (5000 GL) (NLWRA 

2001a). Seventy-five per cent of water extracted is used for irrigation, with irrigation 

water use increasing by 76% between 1985 and 1996/97 (NLWRA 2001a). Most of 

the growth in irrigation has occurred in New South Wales and Queensland, with the 

area of irrigated land doubling in these states over the last twenty years. Urban and 

industrial water use has also increased by 55% (NLWRA 2001a) between 1985 and 

1996/97’. Increased water usage puts additional pressure on the remaining (depleted) 

water resourses in terms of maintaining healthy freshwater ecosystems, and making 

them increasingly sensitive to any pollution. 

 

The Report recognises that ‘pesticides are possibly the most widespread pollutants, 

which are used extensively in agriculture with cotton, rice, sugar cane and 

horticultural crops. Since 1990, at least 20 fish kills in New South Wales rivers have 

been attributed to pesticides. Integrated pest management and best management 

practices for pesticide use are gradually being implemented and a new generation of 

more selective, less toxic pesticides is also being introduced. However, based on the 

experience of the past 20 years, pesticide use is likely to increase, potentially causing 

continuing pollution of inland waters’. In recognition of this, the current study was 

focused on the pesticides routinely used in large quantities in the Australian 

environment. 
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2.2 SPECIFIC FEATURES OF THE AUSTRALIAN AQUATIC 

ENVIRONMENT 

 

Most ecotoxicological research and the subsequent setting of water quality criteria 

and related issues are based upon the data gathered in the Northern hemisphere and 

related to northern aquatic environments. However, the validity of application of these 

data to other geographical areas with distinctively different features is questionable 

(Hart 1982, Hobbs et al. 2004, Maltby et al. 2005).  

 

Williams (1972) defined several distinctive features of Australian inland waters, 

which include: 

1. The inapplicability of the concept of a standard composition for 

average fresh water; 

2. The predominance of sodium and chloride ions in fresh waters; 

3. The high proportion of saline/fresh standing water bodies; 

4. The high concentration of phosphorus as phosphate in many lakes and 

reservoirs; 

5. The absence of dimictic lakes, the presence of warm monomictic lakes 

(holomixis occur once, not twice as in the north, and takes place in 

winter at temperatures above 4oC). The presence of unique thermal 

pattern in some highland lakes; 

6. The pronounced seasonal and secular fluctuations in discharge values 

for rivers; 

7. The high faunal endemicity 
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8. The absence of a well-defined seasonal terrestrial leaf-fall that affects 

the ecology of stream biota. 

 

Because of the specific climatic regime (low and uncertain rainfall, absence of 

permanent snowfields where rivers can be replenished), topography (mostly flat 

planes with vast deserts in the centre of the continent), and high evapotranspiration 

rates, most of Australia lacks rivers or permanent standing waters. As a result of 

variable rainfall, Australian rivers have highly variable flows, which in turn have 

impact on the biota. 

 

A large part of the aquatic Australian biota is endemic. Around 130 fish species that 

are endemic developed unique reproductive strategies adapted to variable flow and 

periods of drought. Many of the Australian freshwater invertebrates are also endemic, 

and their community compositions are different from those in the Northern 

hemisphere. Because of the seasonal nature of northern species, they have their 

population peaks at different times to avoid competition. This does not happen in 

Australia due to less pronounced seasons, consequently species interactions are 

different from those in the Northern hemisphere (Hart 1982). 

 

All the above features make it necessary that toxicity values for Australian 

ecosystems be obtained using Australian native species, and related issues, such as the 

development of water quality criteria for Australia, be based on these data, and not on 

toxicity data derived from testing species from the Northern hemisphere. The reason 

why Australian and New Zealand Water Quality Guidelines rely predominantly on the 

Northern hemisphere data is lack of appropriate Australian data. 
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In the current study the use of a cosmopolitan cladoceran is proposed (Daphnia 

carinata King) in conjunction with cosmopolitan algal species, which are also native 

to Australia (unicellular green freshwater algae Chlorella pyrenoidosa and 

Pseudokirchneriella subcapitata), to investigate the effects of low concentrations of 

agricultural chemicals on non-target organisms in prolonged exposures since these 

species are found in Australian environmental trophic chains. 

 

2.3 AGROCHEMICALS IN THE AUSTRALIAN ENVIRONMENT 

 

The herbicide glyphosate (see Appendix 1 for properties and Fig. 2.1 for structure) 

was proposed for the study to investigate its effects on algae (potential target 

organisms) and a cladoceran (non-target organism), which feeds on these algae. 

Another agrochemical (that is also used in household applications in Australia) is the 

insecticide chlorpyrifos. Chlorpyrifos (see Appendix 1 for properties and Fig. 2.2 for 

structure) is highly toxic to crustaceans (of which daphnia is a representative), 

because they are closely related to insects. Though chlorpyrifos is not toxic to plants 

and algae, it is expected to influence their growth (though it is not known to what 

extent) due to its phosphorus content. Both chemicals are expected to influence the 

algae-cladoceran interactions due to their effects on at least one of the trophic links. 

Both agrochemicals are widely used in Australia and worldwide. 
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2.3.1 CHLORPYRIFOS IN THE AQUATIC ENVIRONMENT 

 

CPF was introduced worldwide in 1965 to replace organochlorines and is one of the 

most widely used chemical organophosphate insecticides in the market today (Dow 

Agro Sciences www.dowagro.com). About 40 million kg of CPF is manufactured per 

year and it is an active ingredient in about 800 products in the USA 

(www.dowagro.com). There are 13 licensed producers of chlorpyrifos-based 

pesticides in Australia (NRA 2000). During the mid-1990s, 4-5.5 million kg were 

used annually in non-agricultural situations in over 17% of households in Australia. 

Agricultural usage estimates even more, with annual application of 4.5-10 million kg 

(NRA 2000). The National Water Quality Assessment Program (NAQWA) has been 

monitoring major watersheds in the US since 1991. The data reveals that 

concentrations of four organophosphorus pesticides (chlorpyrifos among them) 

exceed water quality criteria for aquatic life protection more often than other 

pesticides (de Vlaming et al. 2004).  

 

Recently, the US EPA and the manufacturers of CPF agreed to eliminate nearly all 

household applications of the insecticide, but agricultural use continues worldwide, 

including Australia. For example, chlorpyrifos together with lindane, endosulfan and 

DDT was still the major concern in some parts of South Australia (Liston and Maher 

1997). Chlorpyrifos was also detected in irrigation districts of New South Wales 

(Bowmer et al. 1998, Cooper 1996, Muschal 1998). It is estimated that in the sugar 

cane growing regions of Queensland, 74 500 kg of chlorpyrifos is used annually, 

which constitutes around 90% of all insecticide use by that industry (Hamilton and 

Haydon 1996). As a consequence of its widespread use, chlorpyrifos was detected in 
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Australian waterways at concentrations up to 0.525 mg/L (Humphrey and Klumpp 

2000), while the recommended level of protection of 80 and 95% of species for fresh 

waters is 1.2 and 0.00004 µg/L respectively (ANZECC &  ARMCANZ 2000). 

 

Schulz (2001) studied a rainfall-induced runoff of pesticides from orchards into the 

Lourens River in South Africa, and found that as a result of such an event the 

pesticide contamination levels (including chlorpyrifos) were extremely high – they 

exceeded the national water quality standards and those established by the US EPA 

and may result in acute toxic effects on aquatic invertebrates and fish. He also 

conducted a probability analysis of 10-y rainfall data and found that such an event 

occurs approximately every 7 months. Considering that similar climatic conditions 

exist in Australia, a possibility of such events occurring here is very high (Muschal 

and Warne 2003). 

 

In Australia not only agricultural but also household use of chlorpyrifos still 

continues. In March 1999 ecological and human health risk assessment of chemicals 

in sewage treatment plant discharges to the Hawkesbury-Nepean river system (NSW, 

Australia) found chlorpyrifos in the effluent of 2 inland sewage plants at levels that 

would constitute a risk to aquatic life (Sydney Water 2000). In addition this 

insecticide is commonly used in urban areas and appears in urban stormwater runoffs 

in the USA (Bailey et al. 1995), and the same pattern is expected to be present in 

Australia. 

 

Organophosphorus pesticides such as chlorpyrifos are considered to be non-persistent 

in the environment; however, experimental research with 14C-labelled chlorpyrifos 
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has shown that this pesticide may persist for relatively long periods of time through 

sediment-water partitioning (Carvalho et al. 2002). 

 

2.3.2 GLYPHOSATE IN THE AQUATIC ENVIRONMENT 

 

Glyphosate was first reported as an herbicide in 1971. Three related products are now 

manufactured by Monsanto and Zeneca. In pure chemical terms glyphosate is an 

organophosphate because it contains carbon and phosphorous. However, it does not 

affect the nervous system in the same way as organophosphate insecticides, and is not 

a cholinesterase inhibitor, but rather it acts on various enzyme systems inhibiting 

amino acid metabolism in what is known as the shikimic acid pathway (Duke 1988). 

This pathway exists in higher plants and micro-organisms but not in animals. 

 

Glyphosate product sales are currently worth approximately US$1,200 million 

annually worldwide and represent about 60% of global non-selective herbicides sales 

(Agrow 1995). The total world herbicide market was worth about US$14,285 million 

in 1995 (British Agrochemical Association 1996). 

 

In UK arable agriculture, glyphosate was the 12th most extensively used pesticide 

active ingredient; the 5th most extensively used herbicide by weight with 251 tonnes 

being used; and 38th most widely applied herbicide, being applied over 334,529 ha 

annually in 1994 (MAFF 1995). In the US nearly 8,500 tonnes was being used on 5-8 

million hectares annually in the years leading up to 1991(US EPA 1993). 

 

 26



The toxicity of glyphosate to mammals and birds is generally relatively low. Fish and 

aquatic invertebrates are more sensitive to glyphosate and its formulations. Some soil 

invertebrates including springtails, mites and isopods are also adversely affected by 

glyphosate (www.pesticideinfo.org). Of nine herbicides tested for their toxicity to soil 

micro-organisms, glyphosate was found to be the second most toxic to a range of 

bacteria, fungi, actinomycetes and yeasts (Carlisle and Trevors 1988). 

 

However, while glyphosate alone has low toxicity, the formulation of glyphosate with 

the surfactant polyoxyethylene amine (POEA), which is widely used, is significantly 

more toxic (Wan et al. 1989; Servizi et al. 1987). 

 

In Australia the recommended maximum level of glyphosate to ensure protection of 

99 and 80% of aquatic freshwater life are 0.37 and 3.6 mg/L respectively (ANZECC 

&  ARMCANZ 2000). Though glyphosate is considered non-persistent, it can last in 

the aquatic environment for a considerable time (up to ten weeks) and thus has the 

potential to affect non-target species with a short life cycle, such as cladocerans. 

Based on the scientific data available on glyphosate toxicity to aquatic animals, major 

organizations (USEPA 1993, WHO 1994) conclude that glyphosate and its 

formulation Roundup can be used with minimal risk to the environment. However it is 

possible that though glyphosate might not be toxic to animals, it still affects them at 

concentrations found in the environment. 

 

In Australia most formulations of glyphosate have been banned from use in or near 

water because of their toxic effects on tadpoles and to a lesser extent on adult frogs. 

There is also concern about long-term sublethal effects of the herbicide on frogs 
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(Mann & Bidwell 1999). However, new formulations such as Roundup Biactive are 

excluded from the ban (Agrow 1996). Only few studies have been conducted on the 

toxicity of Roundup Biactive to aquatic biota (Mann and Bidwell 1999), and more 

data is required, especially on its long-term sublethal effects. 

 

2.4 AIMS OF THE PROJECT 

 

In order to determine the effects of low (environmentally realistic) concentrations of 

agricultural pesticides on non-target organisms, and considering all the issues 

presented above, the aims of the PhD project were as follows: 

1. To investigate the effects of the herbicide glyphosate and its formulation 

Roundup Biactive on the growth of two Australian species of freshwater 

unicellular green algae Chlorella pyrenoidosa and Pseudokirchneriella 

subcapitata with special attention to the effects at environmentally realistic 

concentrations. 

2. To study the effects of the insecticide chlorpyrifos on non-target organisms – 

algae Chlorella pyrenoidosa and Pseudokirchneriella subcapitata at low 

environmentally realistic concentrations especially with respect to hormesis 

and consequent potential algal blooms. 

3. To study the effects of low concentrations of chlorpyrifos on population 

characteristics of Daphnia carinata in long-term multiple generation 

exposures. 

4. To investigate the lethal and sublethal effects of low concentrations of 

glyphosate and its formulation Roundup Biactive on the growth and 
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reproduction of a native Australian cladoceran Daphnia carinata King in long-

term exposures and using multiple-generation toxicity tests. 

5. To establish the interdependence (if any) between the two trophic links when 

exposed to environmentally realistic concentrations of the above pesticides, 

and to evaluate the consequences of these exposures on an ecosystem. 

6. To provide recommendations based on the results of the project on minimising 

detrimental effects of chronic exposure to environmentally realistic 

concentrations of the investigated pesticides on aquatic ecosystem health. 
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CHAPTER 3 

EFFECT OF GLYPHOSATE AND CHLORPYRIFOS ON 

AQUATIC ORGANISMS - LITERATURE REVIEW 

 

3.1 GLYPHOSATE TOXICITY TO DIFFERENT ORGANISMS  

 

3.1.1 General issues 

 

Various National environment agencies including Environment Canada (Peterson et 

al. 1994), USEPA, EU and the Australian National Registration Authority (NRA 

1997) use an Expected Environmental Concentration (EEC) in evaluating the hazard 

of pesticides to non-target aquatic organisms. This concentration is calculated by 

assuming an overspray of a 15 cm deep water-body at the label application rate 

(Peterson et al. 1994). The EEC is then related to the EC50 for a given aquatic test 

organism. 

 

In Canada, Vision® (containing 356 g/L of glyphosate as an active ingredient) is a 

major forest management herbicide, representing 81% of all herbicides sprayed on the 

forests. Because of the aerial method of application it can enter aquatic systems. Once 

in there, its half-life can vary from several days to ten weeks depending on the pH of 

the water (Trotter et al. 1990, cited in Morgan and Kiceniuk 1992). The Canadian 

Water Quality Guidelines recommend IMAC (Interim Maximum Accepted 

Concentration) for protection of aquatic life to be 65 µg/L. However, on occasion, the 
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glyphosate levels were found to be up to 270 µg/L in some water bodies (Morgan and 

Kiceniuk 1992). 

 

In Australia the recommended level of glyphosate to protect 99-80% of aquatic 

freshwater life is 0.37-3.6 mg/L respectively (ANZECC and ARMCANZ 2000). 

 

Water quality parameters can affect the toxicity of glyphosate. Folmar et al. (1979) 

reported that increased temperature and pH both result in an increased toxicity of RB 

to rainbow trout. They also found that solutions of Roundup aged for up to 7 days in 

reconstituted water did not change in toxicity to midge larvae, rainbow trout, or 

bluegills. This indicates that the chemical can accumulate to dangerous levels in 

environmental waters if there are repeated applications within short time intervals. 

 

There are few studies of effects of glyphosate, which may be of importance to human 

health. For example, Marc et al. (2004) demonstrated that various glyphosate-based 

herbicides induced cell cycle dysfunction. 

 

3.1.2 Sediment-associated toxicity of glyphosate 

 

Hartman and Martin (1984) demonstrated that the presence of suspended sediment in 

water significantly increased the acute toxicity of Roundup to Daphnia pulex (48-h 

EC50 for daphnia was 3.2 mg/L with suspended sediment and 7.9 mg/L without it) and 

decreased its toxicity to Lemna minor.  
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3.1.3 Effects of glyphosate on algae 

 

Thomas et al. (1986) reported that water samples from arsenal waste sites were highly 

toxic to vascular plants, but were either stimulatory to or had no effect on S. 

capricornutum (now called Pseudokirchneriella subcapitata). Toxicants presented in 

the waste were suspected to be herbicides (including glyphosate) and their mixtures.  

 

Anton et al. (1993) found that glyphosate was not toxic to the freshwater green alga 

Chlorella pyrenoidosa (see Table 3.1, entries 5-7). However Saenz et al. (1997) found 

in their study that much lower concentrations of glyphosate and its formulation Ron-

do caused inhibition of chlorophyll a synthesis in two green algae Scenedesmus 

acutus and S. quadricauda (Table 3.1, entries 9-12). Glyphosate inhibits the synthesis 

of the chlorophyll precursor 5-aminolevulinic acid (ALA) (Duke, 1988). 

 

According to Shikha and Singh (2004) photosynthetic electron transport and O2 

evolution were initially stimulated by glyphosate at 50-200 mg/L, but were inhibited 

by higher concentrations 200-400 mg/L. Hernando et al. (1989) investigated 

chlorophyll and carotenoid content, greening process, photosynthetic and respiration 

rates and photosynthetic pigment content of Chlorella pyrenoidosa when grown in 

glyphosate concentrations raging from 0.1 mM to 1 mM (17 mg/L to 170 mg/L). The 

highest concentration inhibited growth completely; other concentrations reduced 

growth and photosynthetic pigment content. Glyphosate inhibited chlorophyll 

synthesis and reduced carotenoids. Oxygen evolution was also strongly inhibited. 

They concluded that glyphosate acts as an electron inhibitor, affecting both 

photosystems. 
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Peterson et al. (1994) estimated the Expected Environmental Concentrations for 

glyphosate formulations to be around 3 mg Gly/L. Authors found that among ten 

species of algae tested only diatoms and one cyanobacterium were sensitive to 

glyphosate. It appears that some algal species are more sensitive to glyphosate than 

others, and the variation is orders of magnitude. According to Saenz et al. (1997), the 

EEC for glyphosate is higher than the concentrations producing negative effects in 

algae in their study, and therefore the use of glyphosate formulation in aquatic 

environments may cause harmful effects on long-term development of S. quadricauda 

populations (as well as some others). 

 

Christy et al. (1981) calculated EC50 (growth rate) of Chlorella sorokiniana to be 17.7 

mg/L. Gardner et al. (1997) studied the effect of Rodeo® on growth of the freshwater 

green alga Ankistrodesmus. They found that the 96-h EC50 for this species was 74 

mg/L (Table 3.1, entry 8). Maule and Write (1984) calculated the 96-h EC50 values of 

glyphosate for several algal species and found it to be non-toxic to microalgae. The 

most sensitive species tested was Chlorococcum hypnosporum with an EC50 of 68 

mg/L, the least sensitive with an EC50 of 590 mg/L was Chlorella pyrenoidosa. Hess 

(1980) reported that a concentration of 1000 mg/L of glyphosate reduced the growth 

rate of Chlamydomonas to 30% of the control. 

 

Hartman and Martin (1984) found that glyphosate did not produce any inhibitory 

effects on sprouting or early growth of sago pondweed Potamogeton pectinatus when 

treated with the concentrations up to 10.0 mg/L.  However it stimulated plant growth 

at 1.0 mg/L.  Schaffer and Sebetich (2004) found that low concentrations (0.125-12.5 
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mg/L) of Rodeo (a formulation of glyphosate) induced primary productivity of a 

phytoplankton community up to 168% of the control value. 

 

3.1.4 Effect of glyphosate on freshwater fauna (single species data) 

 

Most toxicity testing of glyphosate have been conducted using different species of 

fish (see Table 3.1, entries 91-142), e.g. goldfish Carassius auratus (Anton et al. 

1994), rainbow trout Oncorhyncus mykiss (Anton et al. 1994, Morgan & Kiceniuk 

1992), coho Oncorhynchus kisutch (Wan et al. 1989, Servizi et al. 1987, Mitchell et 

al. 1987), chum Oncorhynchus keta (Wan et al. 1989), chinook Oncorhyncus 

tshawytsha (Wan et al. 1989, Mitchell et al. 1987), pink salmon Oncorhyncus 

gorbuscha (Wan et al. 1989), rainbow trout Salmo gairdneri (Wan et al. 1989, Servizi 

et al. 1987, Mitchell et al. 1987, Folmar et al. 1979), carp Cyprinus carpio (Neskovic 

et al. 1996), sockeye salmon Oncorhynchus nerka (Servizi et al. 1987), mosquitofish 

Gambusia yucatana (Rendon-van Osten et al. 2005).   

 

There has been an extensive study of the toxicity of different formulations of 

glyphosate to several species of Australian frogs (Mann & Bidwell 1999) (Table 3.1, 

entries 51-72) and other species of amphibians (Table 3.1, entries 73-90), and a few 

studies involving cladocerans (Table 3.1, entries 31, 36, 39-43, 45-47, 49) and other 

types of invertebrates and protozoans (Table 3.1, entries 21-30, 32-35, 37-39, 50). In 

general, not much attention was paid to the effects of glyphosate and its formulations 

on freshwater fauna. This is probably because glyphosate is considered to be non-

toxic to animals, since they lack the metabolic pathway, along which the chemical 

reacts (the shickimate pathway is found only in plants).  However some results 
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suggest that though glyphosate might not be toxic to animals, it still affects them at 

concentrations found in the environment. 

 

Morgan and Kiceniuk (1992) examined the effects of a two-months exposure to 

glyphosate, as Vision®, on the growth, behaviour, and gill and liver histopathology of 

rainbow trout. Concentrations tested were 6.25, 25 and 100 µg/L nominal 

concentration, the measured concentrations were 4.25, 8 and 45.75 µg/L respectively. 

There were no significant differences between control and treated animals in terms of 

all endpoints observed at all treatment concentrations, except one aspect of agonistic 

behaviour.  At the highest tested concentration animals demonstrated higher 

frequency of aggressive behaviour – wigwags. It should be noted that this effect was 

observed at concentrations much lower than those found in some water bodies after 

spray application (Trotter et al. 1990). 

 

Wan et al. (1989) found that the toxicity of glyphosate and its formulations depends 

on the type of dilution water used. Overall they found that variation of 96-h LC50 

values for MON 0818, MON 8709 and Roundup® is in the same order of magnitude 

irrespective of water types. For glyphosate these values can vary by an order of 

magnitude depending on water type, with water hardness and pH being the most 

important contributing factors. Roundup®, MON 8709 and MON 0818 are more toxic 

to young salmonids in hard waters than they are in soft waters, while the reverse is 

true for glyphosate. 

 

Edginton et al. (2004) compared toxicity of Vision® to several species of amphibians 

at different pHs and determined that it was more toxic to three species out of four at 
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pH=7.5 than at pH=6, and the larval stage was more sensitive than the embryonic 

stage. Together with pH, other environmental factors such as availability of food can 

exacerbate chemical effects of Vision®, as was determined by Chen et al. (2004) in 

their experiments with Simocephalus vetulus and tadpoles of Rana pipiens. For both 

species, significant effects of the herbicide were measured at concentrations lower 

than the calculated worst-case value for EEC (1.4 mg/L ae), while high pH (7.5) 

increased the toxicity of herbicide to S. vetulus. Thompson et al. (2004) confirmed 

that amphibians are among the most sensitive organisms to glyphosate. However after 

conducting an in situ study they concluded that there was no risk to amphibians from 

glyphosate (as Vision®) application at recommended rates. Smith (2001) found that 

Kleeraway ® Grass was toxic to the tadpoles of two species of frogs: chorus frog 

Pseudacris triseriata and plains leopard frog Rana blairi at a concentration of 0.75 

mg/L (as IPS equivalent) – about half of them died within 24 hours. However, further 

exposure of surviving animals to this concentration did not have any negative effect 

on their growth and development. Lajmanovich et al. (2003) found that glyphosate 

formulation Glyfos® induced death in 80% of tadpoles of Scinax nasicus at a 

concentration of 3.07 mg/L, with 75% malformed (craniofacial and mouth 

deformities, eye abnormalities and bent tails) in a 96-h exposure. Howe et al. (2004) 

observed that Roundup Original, Roundup Transorb and POEA (surfactant) 

significantly negatively affected growth and development of several species of 

amphibians in a chronic exposure to sublethal concentrations (0.6 mg/L of ae) of these 

compounds. 
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3.1.5 Effect of glyphosate on water communities. 

 

Simenstad et al. (1996) conducted an intensive 119-day experiment in southern 

Willapa Bay, Washington, to evaluate the potential effects of a mixture of glyphosate 

(Rodeo®, 4.7 L/ha) and an associated surfactant, alkylarylpolyoxyethylene (AAPOE, 

X-77® Spreader, 1L/ha) on mudflat benthic communities. They concluded that there 

were no indications of either short- or long-term effects on the mudflat community 

after aerially applying this concentration of herbicide and surfactant. Though this 

study did not address either sublethal or indirect ecological effects of the herbicide 

application, there was an observed decrease in the exotic eelgrass Zostera japonica, 

that might be a longer-term, subtler response by the mudflat community. (Calculation 

of glyphosate concentration according to the Environment Canada procedure 

(Peterson et al., 1994) gives us the concentration of active ingredient not more than 

1.7 mg/L at the time of application, which in an estuarine environment will quickly 

decrease even further). 

 

Perschbacher et al. (1997) studied the effect of sprayed herbicides (glyphosate among 

them) on the water communities (plankton productivity, zooplankton populations) and 

water quality. Though they did not provide all data in their paper, they stated that 

there were no significant differences between control and treated mesocosms, when 

sprayed with glyphosate at a rate of 0.43 kg/ha (see Table 3.1, entry 143). Similarly 

Kilbride and Paveglio (2001) conducted a 3-year study on effects of repeated 

applications of Rodeo to control smooth cordgrass Spartina sp. in Willapa Bay on 

aquatic biota. They concluded that under worst-case conditions short- and long-term 

detrimental effects of these applications would be highly unlikely. 
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In contradiction other researchers suggest that glyphosate could affect aquatic 

communities. For example, Bengtsson et al. (2004) measured the grazing rate of 

Daphnia pulex when pre-exposed to glyphosate via two vectors – water and food 

Scenedesmus spp. (exposure concentration in both cases was 50 mg/L), and found that 

the grazing rate was greatly reduced (40%) when exposed via the food route, 

suggesting greater toxicity of glyphosate to Daphnia than when exposed directly via 

water. 

 

3.1.6 Bioconcentration of glyphosate 

 
No bioaccumulation, biomagnification or persistence in a biologically available form 

is reported for glyphosate. 

 

3.1.7 Toxicity of glyphosate formulations: active ingredient vs. 

surfactant 

 

A number of researchers (Wan et al. 1989; Servizi et al. 1987) indicated that the 

surfactants in Roundup are more toxic to aquatic flora and fauna than the active 

ingredient glyphosate: MON8709 (Table 3.1, entries 120-124), MON 0818 (part of 

MON 8709, Table 3.1, entries 36, 105-107, 130-134). Mitchell et al. (1987) compared 

toxicity values for Rodeo herbicide alone and for Rodeo herbicide with X-77 

surfactant as recommended for application by the manufacturer Monsanto. They 

found that the 96-h LC50 value of Rodeo/X-77 mixture was more than 4 times lower 
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than Rodeo without the surfactant (130 mg/L of active ingredient and 580 mg/L 

respectively, Table 3.1, entries 112-114). 

 

Tsui and Chu (2003) tested several formulations of glyphosate and Roundup 

surfactant using a number of marine and freshwater organisms (bacterium, algae, 

protozoans and cladocerans) to assess their relative toxicity. They found that 

polyoxyethylene amine (POEA) surfactant was the most toxic (normalized as acid 

equivalent) among four compounds tested, up to 6 times more toxic than Roundup 

and up to 360 times more than the isopropylamine salt of glyphosate (a usual active 

ingredient of glyphosate-based herbicides) (see Table 3.1, entries 1-4, 13-28 and 42-

49 for comparison). Marc et al. (2005) also found POEA was highly toxic to the 

embryos of sea urchin Sphaerechinus granularis – irreversible damage and deaths 

occurred at concentrations >30 mg/L. Howe et al. (2004) confirmed that among 

several formulations of glyphosate and their surfactants, POEA was the most toxic, 

negatively affecting development of amphibians at a concentration 0.6 mg/L ae, and 

was lethal to 50% of Rana clamitans at a concentration 2.2 mg/L ae.  

 

Several other authors have confirmed the toxicity of the surfactant to be higher than 

that of the active ingredient. These include Alberdi et al. (1996), who investigated the 

toxicity of RON-DO® in 48-h toxicity testing using Daphnia magna and D. spinulata 

(see Table 3.1, entries 40-41). RON-DO formulation contained 48% of glyphosate as 

isopropylamine salt and 15% of surfactant (oxide-coco-amide-propyl-dimethyl-

amine). EC50 values were 66.18 mg/L for D. spinulata and 61.72 mg/L for D. magna.  

In comparison Henry et al. (1994) found 48-h LC50 value for D. magna to be 218 

mg/L when exposed to Rodeo herbicide (Table 3.1, entry 39). Henry et al. (1994) also 
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found that the surfactant X-77 used in some glyphosate formulations was about a 100 

times more toxic to D. magna than Rodeo (48-h LC50 is 2 mg/L for X-77). In general 

X-77 Spreader® was 83-136 times more toxic than Rodeo when tested using different 

species of animals (Table 3.1, entries 37-39). Similarly Folmar et al. (1979) found 

that glyphosate contributed only a small percentage of the toxicity of Roundup® and 

that the surfactant in the formulation was the primary toxic agent (see also entries 33 

and 95-98 of Table 3.1). 

  

Mann and Bidwell (1999) determined the acute toxicity of technical grade glyphosate 

acid, glyphosate isopropylamine, and three glyphosate formulations to adults of one 

species and tadpoles of four species of southwestern Australian frogs in 48-h 

static/renewal tests (Table 3.1, entries 51-72). They found that among the tested 

formulations Roundup® Herbicide was the most toxic to the tadpoles (between 2.9 

and 11.6 mg/L glyphosate acid equivalent [AE]). Touchdown® Herbicide was slightly 

less toxic (from 9.0 to 16.1 mg/L AE). All other formulations and technical grade 

glyphosate were practically non-toxic. These authors concluded that the surfactants in 

test formulations were the major contributing factor to their toxicity, and they should 

be studied further. 

 

Everett and Dickerson (2003) studied the toxicity of technical grade glyphosate and 

formulation Roundup to ciliates Tetrahymena thermophila and Ichthyophthirius 

multifiliis and also concluded that Roundup was at least 100 times more toxic than 

technical grade glyphosate, confirming the toxicity of the products used in 

formulation. 
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Table 3.1 Glyphosate toxicity to different organisms (1979-2004). A.e. (acid equivalent), ai-active ingredient, pf-product formulation, ChV-
chronic values (calculated as a geometrical mean between LOEC and NOEC), all mg/L

 
 

Parameter #  Glyphosate formulation
1 

Species 
2 

Effect measured 
3 Name 

4 
Value 

5 

Reference 
6 

BACTERIA  AND ALGAE  
1 Glyphosate acid Marine bacterium 

Vibrio fischeri 
Luminescence 

emission 
15-min IC50 17.5 (15.8-19.5) ae Tsui and Chu, 

2003 
2 Isopropylamine salt of 

glyphosate 
Marine bacterium 

Vibrio fischeri 
Luminescence 

emission 
15-min IC50 162 (150-177) ae Tsui and Chu, 

2003 
3 Polyoxyethylene amine 

(Surfactant in Rodeo®) 
Marine bacterium 

Vibrio fischeri 
Luminescence 

emission 
15-min IC50 10.2 (9.80-10.7) ae Tsui and Chu, 

2003 
4 Rodeo® Marine bacterium 

Vibrio fischeri 
Luminescence 

emission 
15-min IC50 24.9 (23.9-26.0) ae Tsui and Chu, 

2003 
5 Glyphosate 36% Alga Chlorella 

pyrenoidosa 
Growth inhibition 96-h EC50 

NOEC 96-h  
396-423 a.i. 

108 a.i. 
Anton et al., 1993 

6 Glyphosate, technical 
grade, 38% 

Alga Chlorella 
pyrenoidosa 

Growth inhibition 96-h EC50 
 

380 a.i. Anton et al., 1993 

7 Glyphosate, technical 
grade, 54.9% 

Alga Chlorella 
pyrenoidosa 

Growth inhibition 96-h EC50 
 

1082 a.i. Anton et al., 1993 

8 Rodeo® Green alga 
Ankistrodesmus 

Growth  96-hr EC50 74± 47 a.i. Gardner et. al., 
1997 

9 Ron-do Alga Scenedesmus 
acutus 

Chlorophyll a 
inhibition 

NOEC 
LOEC 
ChV 

96-h EC  50

3.2 Gly 
4.08 Gly 
3.61 Gly 

9.08 Gly (8.4-9.7) 

Saenz et al, 1997 

10 Ron-do Alga Scenedesmus 
quadricauda 

Chlorophyll a 
inhibition 

NOEC 
LOEC 
ChV 

96-h EC  50

1.25 Gly 
2.5 Gly 

1.76 Gly 
9.09 (8.06-10.2) Gly 

Saenz et al, 1997 
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11 Glyphosate Alga Scenedesmus 
acutus 

Chlorophyll a 
inhibition 

NOEC 
LOEC 
ChV 

96-h EC  50

2 Gly 
4 Gly 

2.82 Gly 
10.2(10.4-11.2) Gly 

Saenz et al, 1997 

12 Glyphosate Alga Scenedesmus 
quadricauda 

Chlorophyll a 
inhibition 

NOEC 
LOEC 
ChV 

96-h EC  50

0.77 Gly 
1.55 Gly 
1.09 Gly 

7.2(4.4-8.9) Gly 

Saenz et al, 1997 

13 Glyphosate acid Freshwater alga 
Selenastrum 

capricornutum 

Absorbance at 680 nm 96-h IC50 24.7 (22.8-16.7) ae Tsui and Chu, 
2003 

14 Isopropylamine salt of 
glyphosate 

Freshwater alga 
Selenastrum 

capricornutum 

Absorbance at 680 nm 96-h IC50 41.0 (29.4-59.1) ae Tsui and Chu, 
2003 

15 Polyoxyethylene amine 
(Surfactant in Rodeo®) 

Freshwater alga 
Selenastrum 

capricornutum 

Absorbance at 680 nm 96-h IC50 3.92 (1.57-9.58) ae Tsui and Chu, 
2003 

16 Rodeo® Freshwater alga 
Selenastrum 

capricornutum 
 

Absorbance at 680 nm 96-h IC50 5.81 (2.36-8.14) ae Tsui and Chu, 
2003 

17 Glyphosate acid Marine alga 
Skeletonema 

costatum 

Absorbance at 675 nm 96-h IC50 2.27 (0.82-11.1) ae Tsui and Chu, 
2003 

18 Isopropylamine salt of 
glyphosate 

Marine alga 
Skeletonema 

costatum 

Absorbance at 675 nm 96-h IC50 5.89 (3.14-10.4) ae Tsui and Chu, 
2003 

19 Polyoxyethylene amine 
(Surfactant in Rodeo®) 

Marine alga 
Skeletonema 

costatum 

Absorbance at 675 nm 96-h IC50 3.35 (2.02-5.40) ae Tsui and Chu, 
2003 

20 Rodeo® Marine alga 
Skeletonema 

costatum 

Absorbance at 675 nm 96-h IC50 1.85 (0.33-10.49) ae Tsui and Chu, 
2003 
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PROTOZOAN 
21 Glyphosate acid Freshwater 

protozoan 
Tetrahymena 

pyriformis 

Culture growth 40-h IC50 648 (430-1280) ae Tsui and Chu, 
2003 

22 Isopropylamine salt of 
glyphosate 

Freshwater 
protozoan 

Tetrahymena 
pyriformis 

Culture growth 40-h IC50 386 (95.2-2020) ae Tsui and Chu, 
2003 

23 Polyoxyethylene amine 
(Surfactant in Rodeo®) 

Freshwater 
protozoan 

Tetrahymena 
pyriformis 

Culture growth 40-h IC50 4.96 (2.90-8.98) ae Tsui and Chu, 
2003 

24 Rodeo® Freshwater 
protozoan 

Tetrahymena 
pyriformis 

Culture growth 40-h IC50 29.5 (11.3-66.0) ae Tsui and Chu, 
2003 

25 Glyphosate acid Marine protozoan 
Euplotes vannus 

Culture growth 48-h IC50 10.1 (6.47-14.5) ae Tsui and Chu, 
2003 

26 Isopropylamine salt of 
glyphosate 

Marine protozoan 
Euplotes vannus 

Culture growth 48-h IC50 64.09 (19.0-325) ae Tsui and Chu, 
2003 

27 Polyoxyethylene amine 
(Surfactant in Rodeo®) 

Marine protozoan 
Euplotes vannus 

Culture growth 48-h IC50 5.00 (4.62-5.42) ae Tsui and Chu, 
2003 

28 Rodeo® Marine protozoan 
Euplotes vannus 

Culture growth 48-h IC50 23.5 ae Tsui and Chu, 
2003 

INVERTEBRATES 
29 Glyphosate (commercial 

grade, 41%) 
Rotifer Brachionus 

calyciflorus 
Survival 24-h LC 50 28.0  Xi & Feng, 2004 

30 Rodeo®

 
X-77 

Leech 
Nephelopsis 

obscura 

Survival  96-h LC50 1177 (941-1415) 
 

14.1 (10.7-19.0) 

Henry et. al., 
1994 

31 Roundup® Herbicide 
(MON 2139 surfactant) 

Water flea  
Daphnia magna 

Survival  48-h LC50 3.0 (2.6-3.4) a.i. Folmar et al., 
1979 
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32 Technical grade 
glyphosate (MON0573) 

Midge larvae 
Chironomous 

plumosus 

Survival  
48-h LC50

 
55 (31-97) a.i. 

Folmar et al., 
1979 

33 Surfactant (MON0818) Midge larvae 
Chironomous 

plumosus 

Survival  48-h LC50 13 (7.1-24) a.i. Folmar et al., 
1979 

34 Roundup® Herbicide 
(MON 2139 surfactant) 

Midge larvae 
Chironomous 

plumosus 

Survival  48-h LC50 18 (9.4-32) a.i. Folmar et al., 
1979 

35 Roundup® Herbicide 
(MON 2139 surfactant) 

Scud 
Gammarus 

pseudoiemnaeus 

Survival  24-h LC50 
48-h LC50
96-h LC50

>100 a.i. 
62 (40-98) a.i. 
43 (28-66) a.i. 

 

Folmar et al., 
1979 

36 Roundup (480 g/L of 
glyphosate as 

isopropylamine salt) 

Cladoceran 
Daphnia pulex 

Immobilization 96-h LC50 (as Roundup) 
96-h LC50 (as 
glyphosate) 

96-h LC50 (as 
MONO818) 

 

25.5  
7.8 

 
3.8 

Servizi et al., 
1987 

37 Rodeo®

 
X-77 

Amphipod 
Hyalella azteca 

 
 

Survival  96-h LC50 720(399-1076)  
 

5.3 (4.3-6.7) 

Henry et. al., 
1994 

38 Rodeo®

 
X-77 

Midge 
Chironomus 

riparius 

Survival  48-h LC50 1216(996-1566)  
 

10.0 (8.2-13.1) 

Henry et. al., 
1994 

39 Rodeo®

 
X-77 

Cladoceran 
Daphnia magna 

Survival  48-h LC50 218(150-287)  
 

2.0 (1.5-2.7) 

Henry et. al., 
1994 

40 RON-DO (48% of 
glyphosate as 

isopropylamine salt) 

Cladoceran 
Daphnia spinulata 

Immobilization  24-h EC50
48-h EC50

 

94.87(89.1-101) ai 
66.18(61.1-71.8) ai 

Alberdi et. al., 
1996 

41 RON-DO (48% of 
glyphosate as 

isopropylamine salt 

Cladoceran 
Daphnia magna 

Immobilization  24-h EC50
48-h EC50

 

95.96(91.5-101.1) ai 
61.72(58.8-64.2) ai 

Alberdi et. al., 
1996 
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42 Glyphosate acid Freshwater 
crustacean 

Ceriodaphnia dubia 

Survival  48-h LC50 147 (141-153) ae Tsui and Chu, 
2003 

43 Isopropylamine salt of 
glyphosate 

Freshwater 
crustacean 

Ceriodaphnia dubia 

Survival  48-h LC50 415 (339-508) ae Tsui and Chu, 
2003 

44 Polyoxyethylene amine 
(Surfactant in Rodeo®) 

Freshwater 
crustacean 

Ceriodaphnia dubia 

Survival  48-h LC50 1.15 (1.04-1.27) ae Tsui and Chu, 
2003 

45 Rodeo® Freshwater 
crustacean 

Ceriodaphnia dubia 

Survival  48-h LC50 5.39 (4.81-6.05) ae Tsui and Chu, 
2003 

46 Glyphosate acid Marine crustacean 
Acartia tonza 

Survival  48-h LC50 35.3 (30.9-40.3) ae Tsui and Chu, 
2003 

47 Isopropylamine salt of 
glyphosate 

Marine crustacean 
Acartia tonza 

Survival  48-h LC50 49.3 (38.4-63.1) ae Tsui and Chu, 
2003 

48 Polyoxyethylene amine 
(Surfactant in Rodeo®) 

Marine crustacean 
Acartia tonza 

Survival  48-h LC50 0.57 (0.50-0.65) ae Tsui and Chu, 
2003 

49 Rodeo® Marine crustacean 
Acartia tonza 

Survival  48-h LC50 1.77 (1.33-2.34) ae Tsui and Chu, 
2003 

50 Roundup    Freshwater mussel
Utterbackia 
imbecillis 

Survival 24-h LC50 18.3 ± 12.9 Conners & Black, 
2004 

AMPHIBIANS 
51 Technical grade 

glyphosate acid 
Frog (tadpole) 
Litoria moorei 

Survival 24-h LC 50 
48-h LC50

127(90-180)  
121(111-133)  

Bidwell & Gorrie, 
1995  

52 Technical grade 
glyphosate acid 

Frog (adult) 
Crinia insignifera 

Survival  24-h LC50 
48-h LC50

89.6(73.6-108.6)  
83.6(67.4-103.6)  

Bidwell & Gorrie, 
1995  

53 Roundup® Herbicide 
(MON 2139 surfactant) 

Frog (adult) 
Crinia insignifera 

Survival  24-h LC50
 

48-h LC50
 

52.6(39.3-70.5) ae 
146(109-196) pf 

49.4(40.5-60.2) ae 
137(113-167) pf 

 

Bidwell & Gorrie, 
1995  
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54 Roundup® Herbicide 
(MON 2139 surfactant) 

Frog (tadpole) 
Litoria moorei 

Survival  24-h LC50
 

48-h LC50
 

12.7(9.0-18.0) ae 
35.3(25.0-50.0) pf 
11.6(10.3-13.1) ae 
32.2(28.6-36.4) pf 

Bidwell & Gorrie, 
1995 

55 Technical grade 
glyphosate acid 

Frog (tadpole) 
Litoria moorei 

 

Survival  24-h LC50 
48-h LC50

88.6(79.8-98.3)  
81.2(76.7-85.9)  

Mann & Bidwell, 
1999 

56 Glyphosate 
isopropylamine 

Frog (tadpole) 
Lymnodynastes 

dorsalis 

Survival  24-h LC50 
48-h LC50

>400ae, >587pf  
>400ae, >587 pf  

Mann & Bidwell, 
1999 

57 Roundup® Herbicide 
(MON 2139 surfactant) 

Frog (tadpole) 
Lymnodynastes 

dorsalis 

Survival  24-h LC50

 
48-h LC50

4.6(4.1-5.2) ae  
12.8(11.4-14.4) pf 

3.0(2.8-3.2) ae 
8.3(7.8-8.9) pf 

Mann & Bidwell, 
1999 

58 Touchdown® Herbicide 
(4 LC-E) 

Frog (tadpole) 
Lymnodynastes 

dorsalis 

Survival  24-h LC50
 

48-h LC50
 

14.7(14.0-15.4) ae 
44.4(42.3-46.6) pf 
12.0(11.4-12.6) ae 
36.2(34.4-37.9) pf 

Mann & Bidwell, 
1999 

59 Roundup® Biactive 
(MON 77920) 

Frog (tadpole) 
Lymnodynastes 

dorsalis 

Survival  24-h LC50
 

48-h LC50
 

>400 ae 
>1111 pf 
>400 ae 
>1111 pf 

Mann & Bidwell, 
1999 

60 Glyphosate 
isopropylamine 

Frog (tadpole) 
Litoria moorei 

Survival  24-h LC50
 

48-h LC50
 

>343 ae 
>503 pf 
>343 ae 
>503 pf 

 

Mann & Bidwell, 
1999 

61 Roundup® Herbicide 
(MON 2139 surfactant) 

Frog (tadpole) 
Litoria moorei 

Survival  24-h LC50
 

48-h LC50
 

3.1(2.8-3.4) ae 
8.6(7.8-9.4) pf 
2.9(2.6-3.2) ae 
8.1(7.2-8.9) pf 

 

Mann & Bidwell, 
1999 

62 Touchdown® Herbicide 
(4 LC-E) 

Frog (tadpole) 
Litoria moorei 

Survival  24-h LC50
 

10.4(9.7-11.1) ae 
31.4(29.4-33.6) pf 

 

Mann & Bidwell, 
1999 
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63 Roudup® Biactive 
(MON 77920) 

Frog (tadpole) 
Litoria moorei 

Survival  24-h LC50
 

48-h LC50
 

333(305-363) ae 
925(847-1008) pf 
328(296-363) ae 
911(822-1008) pf 

Mann & Bidwell, 
1999 

64 Glyphosate 
isopropylamine 

Frog (tadpole) 
Heleioporus eyrei 

Survival  24-h LC50
 

48-h LC50
 

>373 ae 
>548 pf 
>373 ae 
>548 pf 

Mann & Bidwell, 
1999 

65 Roundup® Herbicide 
(MON 2139 surfactant) 

Frog (tadpole) 
Heleioporus eyrei 

Survival  24-h LC50
 

48-h LC50
 

8.6(7.8-9.5) ae 
23.9(21.7-26.4) pf 

6.3(5.6-7.1) ae 
17.5(15.6-19.7) pf 

Mann & Bidwell, 
1999 

66 Touchdown® Herbicide 
(4 LC-E) 

Frog (tadpole) 
Heleioporus eyrei 

Survival  24-h LC50
 

48-h LC50
 

16.6(14.1-19.6) ae 
50.2(42.5-59.3) pf 
16.1(13.7-18.9) ae 
48.7(41.5-57.1) pf 

Mann & Bidwell, 
1999 

67 Roudup® Biactive 
(MON 77920) 

Frog (tadpole) 
Heleioporus eyrei 

Survival  24-h LC50
 

48-h LC50
 

>427 ae 
>1186 pf 
>427 ae 
>1186 pf 

Mann & Bidwell, 
1999 

68 Glyphosate 
isopropylamine 

Frog (tadpole) 
Crinia insignifera 

Survival  24-h LC50
 

48-h LC50
 

>466 ae 
>684 pf 
>466 ae 
>684 pf 

Mann & Bidwell, 
1999 

69 Roundup® Herbicide 
(MON 2139 surfactant) 

Frog (tadpole) 
Crinia insignifera 

Survival  24-h LC50
 

48-h LC50
 

>5.1 ae 
>14.2 pf 

3.6(3.3-4.1) ae 
10(9.2-11.4) pf 

Mann & Bidwell, 
1999 

70 Touchdown® Herbicide 
(4 LC-E) 

Frog (tadpole) 
Crinia insignifera 

Survival  24-h LC50
 

48-h LC50
 

13.1(12.3-14.0) ae 
39.6(37.2-42.2) pf 

9.0(8.4-9.7) ae 
27.3(25.5-29.3) pf 

Mann & Bidwell, 
1999 

 47 



71 Roudup® Biactive 
(MON 77920) 

Frog (tadpole) 
Crinia insignifera 

Survival  24-h LC50
 

48-h LC50
 

>494 ae 
>1372 pf 
>494 ae 
>1372 pf 

Mann & Bidwell, 
1999 

72 Roundup® Herbicide 
(MON 2139 surfactant) 

Frog (metamorph) 
Crinia insignifera 

Survival  24-h LC50
 

48-h LC50
 

88.7(68.6-114) ae 
246(191-318) pf 

51.8(42.1-63.8) ae 
144(117-177) pf 

 

Mann & Bidwell, 
1999 

73 Glyfos® Tadpole Scinax 
nasicus 

Survival  24-h LC50 
48-h LC50 
72-h LC50 
96-h LC50

4.78 (4.23-5.35) 
3.62 (3.28-5.02) 
3.23 (3.07-3.36) 
2.64 (2.19-2.84) 

Lajmanovich et 
al., 2003 

74 Vision® Amphibian larvae 
Rana clamitans 

Survival  96-h LC10 
96-h LC50

1.2-1.78 a.e. 
2.70-4.34 a.e. 

Wojtaszek et al., 
2004 

75 Vision® Amphibian larvae 
Rana pipiens 

Survival  96-h LC10 
96-h LC50

3.26-7.31 a.e. 
4.25-11.47 a.e. 

Wojtaszek et al., 
2004 

76 Roundup Original® Amphibian Rana 
pipiens 

Survival  24-h LC50 
96-h LC50

3.7 (3.5-3.9) ae 
2.9 ae 

Howe et al., 2004 

77 Roundup Original® Amphibian Rana 
pipiens 

Survival  24-h LC50 
96-h LC50

>8 ae 
6.5 (6.1-6.8) ae 

Howe et al., 2004 

78 Roundup Original® Amphibian Rana 
sylvatica 

Survival  24-h LC50 
96-h LC50

5.6 (5.2-6.1) ae 
5.1 (4.9-5.4) ae 

Howe et al., 2004 

79 Roundup Original® Amphibian Rana 
sylvatica 

Survival  24-h LC50 
96-h LC50

>8 ae 
>8 ae 

Howe et al., 2004 

80 Roundup Original® Amphibian Bufo 
americanus 

 

Survival  24-h LC50 
96-h LC50

4.2 ae 
<4 ae 

Howe et al., 2004 

81 Roundup Original® Amphibian Bufo 
americanus 

Survival  24-h LC50 
96-h LC50

>8 ae 
8 ae 

Howe et al., 2004 

82 Roundup Original® Amphibian Rana 
clamitans 

Survival  24-h LC50 
96-h LC50

2.0 (1.9-2.2) ae 
2.0 (1.9-2.2) ae 

Howe et al., 2004 

83 Roundup Original® Amphibian Rana 
clamitans 

Survival  24-h LC50 
96-h LC50

>8 ae 
7.1 (6.6-7.6) ae 

Howe et al., 2004 
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84 Glyphosate technical Amphibian Rana 
clamitans 

Survival  24-h LC50 
96-h LC50

>17.9 ae 
>17.9 ae 

Howe et al., 2004 

85 POEA   Amphibian Rana 
clamitans 

Survival 24-h LC50 
96-h LC50

2.4 (2.2-2.5) ae 
2.2 (2.1-2.4) ae 

Howe et al., 2004 

86 Roundup Biactive® Amphibian Rana 
clamitans 

Survival  24-h LC50 
96-h LC50

>17.9 ae 
>17.9 ae 

Howe et al., 2004 

87 Touchdown® Amphibian Rana 
clamitans 

Survival  24-h LC50 
96-h LC50

>17.9 ae 
>17.9 ae 

Howe et al., 2004 

88 Glyfos BIO® Amphibian Rana 
clamitans 

Survival  24-h LC50 
96-h LC50

>17.9 ae 
>17.9 ae 

Howe et al., 2004 

89 Glyfos AU® Amphibian Rana 
clamitans 

Survival  24-h LC50 
96-h LC50

9.0 (8.7-9.4) ae 
8.9 (8.6-9.2) ae 

Howe et al., 2004 

90 Roundup Transorb® Amphibian Rana 
clamitans 

Survival  24-h LC50 
96-h LC50

2.3 (2.2-2.4) ae 
2.2 (2.1-2.4) ae 

Howe et al., 2004 

FISH 
91 Technical grade 

glyphosate (MON0573) 
Rainbow trout 

Salmo gairdneri 
Survival 24-h LC 50

96-h LC50

140 (120-170) a.i. 
140 (120-170) a.i. 

Folmar et al., 
1979 

92 Technical grade 
glyphosate (MON0573) 

Fathead minnow 
Pimephales 
promelas 

Survival  24-h LC50
96-h LC50

97 (79-120) a.i. 
97 (79-120) a.i. 

 

Folmar et al., 
1979 

93 Technical grade 
glyphosate (MON0573) 

Channel catfish 
Ictalurus punctatus 

Survival  24-h LC50
96-h LC50

130 (110-160) a.i. 
130 (110-160) a.i. 

Folmar et al., 
1979 

94 Technical grade 
glyphosate (MON0573) 

Bluegills 
Lepomis 

macrochirus 

Survival  24-h LC50
96-h LC50

150 (120-190) a.i. 
140 (110-160) a.i. 

Folmar et al., 
1979 

95 Surfactant (MON0818) Rainbow trout 
Salmo gairdneri 

Survival  24-h LC50
96-h LC50

2.1 (1.6-2.7) a.i. 
2.0 (1.5-2.7) a.i. 

Folmar et al., 
1979 

96 Surfactant (MON0818) Fathead minnow 
Pimephales 
promelas 

Survival  24-h LC50
96-h LC50

1.4 (1.2-1.7) a.i. 
1.0 (1.2-1.7) a.i. 

Folmar et al., 
1979 

97 Surfactant (MON0818) Channel catfish 
Ictalurus punctatus 

Survival  24-h LC50
96-h LC50

18 (8.5-38) a.i. 
13 (10-17) a.i. 

Folmar et al., 
1979 

98 Surfactant (MON0818) Bluegills 
Lepomis 

macrochirus 

Survival  24-h LC50
96-h LC50

3.0 (2.5-3.7) a.i. 
3.0 (2.5-3.7) a.i. 

Folmar et al., 
1979 
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99 Roundup® Herbicide 
(MON 2139 surfactant) 

Rainbow trout 
Salmo gairdneri 

Survival  24-h LC50
96-h LC50

8.3 (7.0-9.9) a.i. 
8.3 (7.0-9.9) a.i. 

Folmar et al., 
1979 

100 Roundup® Herbicide 
(MON 2139 surfactant) 

Fathead minnow 
Pimephales 
promelas 

Survival  24-h LC50
96-h LC50

2.4 (2.0-2.9) a.i. 
2.3 (1.9-2.8) a.i. 

Folmar et al., 
1979 

101 Roundup® Herbicide 
(MON 2139 surfactant) 

Channel catfish 
Ictalurus punctatus 

Survival  24-h LC50
96-h LC50

13 (11-16) a.i. 
13 (11-16) a.i. 

Folmar et al., 
1979 

102 Roundup® Herbicide 
(MON 2139 surfactant) 

Bluegills 
Lepomis 

macrochirus 

Survival  24-h LC50
96-h LC50

6.4 (4.8-8.6) a.i. 
5.0 (3.8-6.6) a.i. 

Folmar et al., 
1979 

103 Roundup® Herbicide 
(MON 2139 surfactant) 

Rainbow trout 
Salmo gairdneri 

Survival: 
 

Eyed eggs 
 

Sac fry 
 

Swim-up fry 
 

Fingerling (1.0 g) 
 

Fingerling (2.0 g) 
 

 
 

24-h LC50
96-h LC50
24-h LC50
96-h LC50
24-h LC50
96-h LC50
24-h LC50
96-h LC50
24-h LC50
96-h LC50

 
 

46 (35-61) a.i. 
16 (13-19) a.i. 
11 (8.8-13) a.i. 
3.4 (2.2-5.3) a.i. 
2.4 (2.0-2.9) a.i. 
2.4 (2.0-2.9) a.i. 

2.2 (0.93-5.2) a.i. 
1.3 (1.1-1.6) a.i. 
8.3 (7.0-9.9) a.i. 
8.3 (7.0-9.9) a.i. 

Folmar et al., 
1979 

104 Roundup® Herbicide 
(MON 2139 surfactant) 

Channel catfish 
Ictalurus punctatus 

Survival: 
 

Eyed eggs 
 

Sac fry 
 

Swim-up fry 
 

Fingerling (2.2 g) 
 

 
 

24-h LC50
96-h LC50
24-h LC50
96-h LC50
24-h LC50
96-h LC50
24-h LC50
96-h LC50

 

 
 

43 (36-51) a.i. 
nd 

4.3 (3.6-5.1) a.i. 
4.3 (3.6-5.1) a.i. 
3.7 (3.4-4.1) a.i. 
3.3 (2.8-3.9) a.i. 
13 (11-16) a.i. 
13 (11-16) a.i. 

Folmar et al., 
1979 
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105 Roundup (480 g/L of 
glyphosate as 

isopropylamine salt) 

Sockeye salmon 
Oncorhynchus 

nerka (fingerlings) 

Survival  96-h LC50 
96-h LC50 (as 
glyphosate) 

96-h LC50 (as 
MONO818) 

26.7-27.7  
8.1-8.4 

 
4.0-4.2 

Servizi et al., 
1987 

106 Roundup (480 g/L of 
glyphosate as 

isopropylamine salt) 

Sockeye salmon 
Oncorhynchus 

nerka (fry) 

Survival  96-h LC50
96-h LC50 (as 
glyphosate) 

96-h LC50 (as 
MONO818) 

28.8  
8.7 

 
4.3 

Servizi et al., 
1987 

107 Roundup (480 g/L of 
glyphosate as 

isopropylamine salt) 

Rainbow trout (fry) 
Salmo gairdneri 

Survival  96-h LC50
96-h LC50 (as 
glyphosate) 

96-h LC50 (as 
MONO818) 

25.5-28.0  
7.8-8.5 

 
3.8-4.2 

Servizi et al., 
1987 

108 Roundup (480 g/L of 
glyphosate as 

isopropylamine salt) 

Coho salmon (fry) 
Oncorhynchus 

kisutch 

Survival  96-h LC50
96-h LC50 (as 
glyphosate) 

96-h LC50 (as 
MONO818) 

42.0  
12.8 

 
6.3 

Servizi et al., 
1987 

109 Roundup (commercial 
formulation) 

Rainbow trout 
Salmo gairdneri 

Survival  96-h LC50 12 (5.7-18) a.i. Mitchell et al., 
1987 

110 Roundup (commercial 
formulation) 

Chinook salmon 
Oncorhynchus 
tshawytscha 

Survival  96-h LC50 9.6 (7.9-13) a.i. Mitchell et al., 
1987 

111 Roundup (commercial 
formulation) 

Coho salmon 
Oncorhynchus 

kisutch 

Survival  96-h LC50 11 (5.7-18) a.i. Mitchell et al., 
1987 

112 Rodeo/X-77    Rainbow trout
Salmo gairdneri 

Survival 96-h LC50 130 (120-160) a.i. Mitchell et al., 
1987 

113 Rodeo/X-77    Chinook salmon
Oncorhynchus 
tshawytscha 

 

Survival 96-h LC50 140 (120-220) a.i. Mitchell et al., 
1987 
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114 Rodeo/X-77    Coho salmon
Oncorhynchus 

kisutch 

Survival 96-h LC50 120 (68-220) a.i. Mitchell et al., 
1987 

115 Glyphosate (technical 
grade) 

 

Coho 
Oncorhynchus 

kisutch 

Survival (range in 
different types of 
dilution water) 

24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

44-210 ai 

27-205 ai 

27-182 ai 

27-174 ai 

Wan et al., 1989 

116 Glyphosate (technical 
grade) 

 

Chum 
Oncorhynchus keta 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

16-202 ai 

13-178 ai 

10-157 ai 

10-148 ai 

Wan et al., 1989 

117 Glyphosate (technical 
grade) 

 

Chinook 
Oncorhyncus 
tshawytsha 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

24-220 ai 

22-220 ai 

22-211 ai 

19-211 ai 

Wan et al., 1989 

118 Glyphosate (technical 
grade) 

 

Pink salmon 
Oncorhyncus 

gorbuscha 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

26-380 ai 

14-245 ai 

14-190 ai 

14-190 ai 

Wan et al., 1989 

119 Glyphosate (technical 
grade) 

 

Rainbow trout 
Salmo gairdneri 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

 

21-220 ai  

11-220 ai  

11-220 ai  

10-197 ai 

Wan et al., 1989 
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120 MON 8709 Coho 
Oncorhynchus 

kisutch 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

25-59 product 

25-57 product 

25-57 product 

25-55 product 

Wan et al., 1989 

121 MON 8709 Chum 
Oncorhynchus keta 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

 

25-62 product 

25-58 product 

23-58 product 

23-58 product 

Wan et al., 1989 

122 MON 8709 Chinook 
Oncorhyncus 
tshawytsha 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

 

33-84 product 

33-79 product 

33-73 product 

33-67 product 

Wan et al., 1989 

123 MON 8709 Pink salmon 
Oncorhyncus 

gorbuscha 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

 

24-88 product 

24-54 product 

24-48 product 

24-48 product 

Wan et al., 1989 

124 MON 8709 Rainbow trout 
Salmo gairdneri 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

 

31-88 product 

20-62 product 

17-48 product 

17-48 product 

Wan et al., 1989 
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125 Roundup® Coho 
Oncorhynchus 

kisutch 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

14-52 product 

13-38 product 

13-35 product 

13-33 product 

Wan et al., 1989 

126 Roundup® Chum 
Oncorhynchus keta 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

 

17-31 product 

12-27 product 

11-25 product 

11-20 product 

Wan et al., 1989 

127 Roundup® Chinook 
Oncorhyncus 
tshawytsha 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

 

17-41 product 

17-33 product 

17-33 product 

17-33 product 

Wan et al., 1989 

128 Roundup® Pink salmon 
Oncorhyncus 

gorbuscha 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

 

17-35 product 

17-33 product 

17-33 product 

14-33 product 

Wan et al., 1989 

129 Roundup® Rainbow trout 
Salmo gairdneri 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

 

17-33 product 

17-33 product 

15-33 product 

14-33 product 

Wan et al., 1989 
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130 75% tallow amine 
surfactant MON 0818 
(Part of MON 8709 –

10% w/w) 

Coho 
Oncorhynchus 

kisutch 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

1.8-4.9 ai 

1.8-4.6 ai 

1.8-4.6 ai 

1.8-4.6 ai 

Wan et al., 1989 

131 75% tallow amine 
surfactant MON 0818 
(Part of MON 8709 –

10% w/w) 

Chum 
Oncorhynchus keta 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

1.5-2.7 ai 

1.4-2.7 ai 

1.4-2.7 ai 

1.4-2.7 ai 

Wan et al., 1989 

132 75% tallow amine 
surfactant MON 0818 
(Part of MON 8709 –

10% w/w) 

Chinook 
Oncorhyncus 
tshawytsha 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

2.0-4.9 ai 

2.0-3.0 ai 

1.9-2.8 ai 

1.7-2.8 ai 

Wan et al., 1989 

133 75% tallow amine 
surfactant MON 0818 
(Part of MON 8709 –

10% w/w) 

Pink salmon 
Oncorhyncus 

gorbuscha 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

1.7-5.3 ai 

1.5-4.5 ai 

1.5-4.5 ai 

1.4-4.5 ai 

Wan et al., 1989 

134 75% tallow amine 
surfactant MON 0818 
(Part of MON 8709 –

10% w/w) 

Rainbow trout 
Salmo gairdneri 

Survival 24 hr LC  50

48 hr LC  50

72 hr LC  50

96 hr LC  50

2.0-3.2 ai 

2.0-2.7 ai 

1.9-2.6 ai 

1.6-2.6 ai 

Wan et al., 1989 

135 Vision (356 g/L of 
glyphosate as N-

(phosphonometyl) 
glycine) 

Rainbow trout 
Oncorhyncus 

mykiss 

Survival  96-h LC50 10.42(9.37-11.67) ai Morgan & 
Kiceniuk, 

1992 
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136 Glyphosate commercial 
formulation 54.9% ai 

Goldfish Carassius 
auratus 

Survival  96-h NOEC
96-h LC  50

3431± 137  ai 
4183.62± 83.5  ai 

Anton et al, 1994 

137 Glyphosate commercial 
formulation 38% ai 

Goldfish Carassius 
auratus 

Survival  96-h NOEC
96-h LC  50

------ 
9500-10000 ai 

Anton et al, 1994 

138 Glyphosate commercial 
formulation 36 % ai 

Goldfish Carassius 
auratus 

Survival  96-h NOEC
96-h LC  50

2880 ai 

9217 ai 

Anton et al, 1994 

139 Glyphosate commercial 
formulation 54.9% ai 

 

Rainbow trout 
Oncorhyncus 

mykiss 

Survival  96 hr NOEC
96 hr LC  50

823.5 ai 

4290.8 ai 

Anton et al, 1994 

140 Technical grade 62% Carp Cyprinus 
carpio 

Survival 48 hr LC  50

96 hr LC  50

 

645 (632-655) ai 

620 (607-638) ai 

Neskovic et al., 
1996 

141 Technical grade 62% Carp Cyprinus 
carpio 

Biochemical &  
 
 
 
 
 
 
 
 
 
 

 
histopathological 

changes 

Alkaline phosphatase 
(AP) activity in liver 
AP activity in heart 

Glutamic-oxaloacetic 
transaminase (GOT) 
activity in liver and 

kidney  
Glutamic-pyruvic 

transaminase (GPT) 
activity in  kidney 

GPT activity in serum 
 

Gills: epithelial 
hyperplasia and 

subepithelial edema 
Liver: congestion of 
sinusoid and signs of 

early fibrosis 

Increased at 2.5, 5, and 10 
a.i. 

Increased at 10 a.i. 
Increased at 2.5 and 5 a.i. 

 
 
 

Increased at 2.5 a.i. 
 
 

Increased at 5 and 10 a.i. 
 

Found at 5 and 10 a.i. 
 
 

10 a.i. 

Neskovic et. al., 
1996 
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142 Rival granular Mosquitofish 
Gambusia yucatana 

Survival  96-h LC10 
96-h LC50 
96-h LC90

9.97 (3.53-13.91) 
17.79 (12.19-25.36) 
31.71 (22.95-84.71) 

Rendon-von 
Osten et al., 2005 

COMMUNITIES 
143 Roundup (application 

spray 0.43 kg a.i./ha) 
Plankton 

communities with 
fish  

DO, pH, ToC, total 
ammonia and nitrite 

nitrogen, chlorophyll a 

 No adverse effect found Perschbacher et 
al., 1997 
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3.2 TOXICITY OF CHLORPYRIFOS TO DIFFERENT 

ORGANISMS 

 

3.2.1 General comments 

 

To get the feel what concentrations are environmentally realistic the EEC and TV 

(trigger value) are presented below. According to the chlorpyrifos manual 

(Chlorpyrifos 500 insecticide, 4 FARMERS, 1997) the application rate is up to 6 L/ha 

for some crops. The EEC (Peterson et al. 1994) calculated for this rate reaches the 

value of 2mg/L, while the recommended level of protection of 80 and 95% of species 

for Australian fresh waters is 1.2 and 0.00004 µg/L respectively (ANZECC & 

ARMCANZ 2000). 

 

Guilhermino et al. (2000) studied the possibility of predicting the acute toxicity of 

various toxicants (including CPF) to rats from the acute toxicity results for D. magna. 

If the chemical is toxic to daphnia, it is likely (with a probability of 0.83) to be toxic 

to a rat, if it’s not toxic to daphnia, the probability is 0.74 that it is not toxic to a rat. 

These authors concluded that the results of their study as well as results published by 

other authors provided good evidence of the applicability of using invertebrate tests as 

pre-screening methods, thus considerably reducing the number of mammals required 

in toxicity testing. This shows the importance of studying the toxicity of chemicals on 

lower taxa not only from environmental point of view but also with implications to 

higher taxa toxicity. 
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3.2.2 Sediment-associated toxicity of chlorpyrifos 

 

There are relatively few studies on the effects of sediment-associated CPF. Green and 

Chandler (1996) assessed the effects of sediment-associated CPF on the population 

parameters of the marine, infaunal copepod, Amphiascus tenuiremis. Total fecundity 

and weekly fecundity were significantly affected at all concentrations tested (5, 14, 

and 22 µg-CPF/kg-sed.). Consequently a large reduction was observed in the intrinsic 

rate of natural increase (r) – 26-52%, and net reproductive rate (R0) –55-73% of those 

of the control. 

 

Anderson et al. (2003a, 2003b) studied the toxicity of water and sediments in the 

Salinas River (California, USA) and found them to be toxic, respectively, to 

cladocerans Ceriodaphnia dubia and to the amphipod Hyalella azteca. Based on 

chemical analysis they concluded that the toxicity was due to diazinon and 

chlorpyrifos, which was present in the river at excessive amounts (up to 0.609 µg/L). 

 

Jergentz et al. (2004) monitored agricultural contamination in two streams in the 

Argentine pampa. The population dynamics and organismic drift of two crustaceans 

Hyalella curvispina and Macrobrachium borelli was affected by CPF applications 

resulting in 100% mortality for both species when a concentration of CPF of 64 µg/kg 

in the suspended sediment was recorded. 

 

3.2.3 Effects of chlorpyrifos on algae 
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Because CPF is considered non-toxic to algae, not many studies have been conducted 

using algal species. Effects of CPF on algae are described in Walsh (1983) (Table 3.2, 

entry 2) and Van Donk et al. (1992) (Table 3.2, entries 1, 3-4). The effects of low 

concentrations of CPF on algae have not been studied at all. However, considering the 

phosphorus content of the insecticide, it has the potential to stimulate growth in algal 

cultures. 

 

3.2.4 Effect of chlorpyrifos on freshwater fauna (single species data) 

 

The toxicity values for CPF to different species are presented in Table 3.2. The results 

of this extensive literature review suggest that CPF is very toxic to all taxonomic 

groups of freshwater fauna from invertebrates to fish. 

 

Snell and Carmona (1995) found that the sexual reproductive cycle of rotifers 

Brachionus calyciflorus is affected by a CPF concentration of 300 µg/L, while 

asexual reproduction remained unaffected (Table 3.2, entry 6). CPF inhibited sexual 

reproduction in its initial step: sexual female production. The authors concluded that 

toxicity tests based exclusively on asexual reproduction may not be protective of 

rotifer life cycles. 

 

Naddy et al. (2000) conducted CPF experiments to evaluate the effect of binary 

combinations of concentration, duration and interval of CPF exposures to Daphnia 

magna. Survival and reproduction of organisms were observed after pulsed exposure 

to CPF at 0.12, 0.25, 0.5, or 1.0 µg/L. The exposure duration resulting in a 50% 

survival was 6.5 h at 1.0 µg/L, 12.2 h at 0.5 µg/L, and 48 h at 0.25 µg/L. Daphnids 
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exposed to two 12-h pulses of CPF at 0.5 µg/L had ≥85% mortality at all pulse 

intervals tested (0, 3, 7, 14 d). However, if a 12-h exposure is divided in two 6-h 

pulses with at least 3 days between them, daphnids were able to survive even at 0.5 

µg/L of CPF. They also found that animals exposed on day 3, 7, or 14 seemed more 

sensitive than those exposed as neonates. Naddy and Klaine (2001) investigated 

further exposure concentrations of 0.5 µg/L (total exposure 12 h) and 1.0 µg/L (total 

exposure 6 h). Authors concluded that D. magna could withstand an acutely lethal 

CPF exposure provided that there is adequate time for recovery between exposures.  

 

Van der Hoeven and Gerritsen (1997) studied the effect of CPF on young and adult 

Daphnia pulex and their ability to recover after the exposure (Table 3.2, entries 45-

50). The NOEC was about 0.05 µg/L. Daphnids were immobilised by CPF several 

days prior to death, and juveniles were immobilised faster that adults. Immobilised 

animals died even when no longer exposed. In two cohort experiments no negative 

effect on reproduction was observed at the highest test concentration at which animals 

survived (for 0.2 and 0.4 µg/L reproduction was 101 and 121 % respectively). In the 

third experiment some effect on reproduction was observed at concentrations also 

affecting survival. In comparison with the control, the mean number of offspring per 

mobile female at the end of the test (6 days) was reduced significantly: 6-d exposure 

to 0.4 µg/L, 2-d to 0.8 µg/L , and 1-d to 1.6 µg/L  reduced the cumulative number of 

offspring to 41, 45 and 3% of that of the control, respectively. Laboratory experiments 

were compared to those in the field. The median effective concentrations for 

population size were similar to the laboratory experiment. The authors conclude that 

the effect of CPF on single species Daphnia population in the laboratory and the field 

can be predicted from the effects observed in tests with individuals.  
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McLeay and Hall (1999) monitored the toxicity of agricultural drainage ditches and 

the Nicomekl River during a 6-month period, using C. dubia. They found that 4% of 

the ditch water samples were lethally toxic with 6- and 7-day LC50s of 39.9 and 

36.5% respectively. Fourteen percent of the ditch water samples and 9% of the river 

water samples inhibited C. dubia reproduction. Chemical analysis of these samples 

revealed trace quantities of CPF and/or diazinon, which the authors believe 

responsible for observed mortality. They conclude, that the cause of inhibited 

reproduction is unknown. Also cited here is the recommended CPF concentration for 

the short-term exposure for the protection of aquatic life according to Washington 

State Water Quality Standards, WAC 173-201A (reference unavailable), which is 

0.083 µg/L, for long-term – 0.041 µg/L (Davis et al., 1997). These authors also 

presented toxicity data derived from other publications (Table 3.2, entries 13, 32-33, 

51-55, 69, 72). 

 

Varo et al. (2002) studied the effects of CPF on two different species of Artemia. For 

acute tests results see entries 60-61 of the Table 3.2. They investigated the changes in 

ChE activity in CPF-exposed animals, and observed a reduction of up to 80-90% for 

both species of Artemia, when exposed to 1.85 mg/L and 2.22 mg/L of CPF for 24 h. 

However, both Artemia  species were resistant to this pesticide and were able to 

survive with more than 80% ChE inhibition. 

 

Chandler et al. (1997) investigated the sublethal effects of CPF on benthic copepod 

survival, age structure and reproduction. Sediment-associated CPF with 

concentrations of 21-33 µg/kg of sediment was used in the experiments. They found 
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no CPF effects on total meiobenthic copepod densities, but the predominant naturally 

occurring copepod Microarthridion littorale, known to be a major prey item for many 

juvenile fish, was significantly reduced in some CPF-spiked microcosms (>25 ng/g 

sediment). Other copepods were either unaffected or their growth was enhanced in the 

presence of chlorpyrifos. Amphiascus tenuiremis, known to be adversely affected at 

this concentration in 96-h static bioassays, increased dramatically in every 

microcosm. The authors concluded that CPF in their experiment was not bioavailable 

or degraded with time. This, however, does not explain a significant increase in 

copepod numbers (up to 64% higher) compared to control. 

 

Roast et al. (1999) noted that juvenile (<24 h old) Neomysis interger (Western 

European mysid) are equally tolerant to CPF as adult mysids (96-h LC50 in flow-

through system 0.19 µg/L and 0.16 µg/L respectively) (Table 3.2, entry 56). 

Comparison with a standard American species Americamysis bahia (Shimmel et al. 

1983) showed that the European species was more tolerant than the American (0.035 

µg/L) (Table 3.2, entry 11), but its tolerance was comparable with other frequently 

used test species (Table 3.2, entries 10, 15-16). The authors argue that use of 

indigenous species for toxicity testing and environmental monitoring is more 

desirable (see also references therein). Verslycke et al. (2004) exposed a mysid 

Neomysis interger to environmentally realistic (0.038-0.100 µg/L) concentrations of 

CPF and observed that their scope for growth (SFG) was significantly affected by the 

CPF exposures (48, 96 and 168 h). In addition, the protein, sugar, lipid and total 

energy content in the cellular energy allocation (CEA) assay and the egestion rate in 

the SFG assay were significantly different in CPF-exposed animals compared with 

control mysids. 
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Barron et al. (1991) studied dietary intake of CPF in a channel catfish. They 

concluded that orally administered CPF had limited availability because of extensive 

metabolism in the liver and possibly in extrahepatic tissues. The same (rapid 

elimination by biotransformation) applied to waterborne exposure (Barron et al. 1993) 

and intravascular administration of CPF (Barron et al. 1991). Holladay et al. (1996) 

exposed Nile tilapia Oreochromis niloticus to the environmentally realistic 

concentration of CPF of 1 µg/L. They found that the immune system of fish was 

affected by the exposure. Treated animals displayed significantly lower total 

pronephros (the anterior of head kidney) cell count than did untreated controls. In 

addition, macrophages isolated from the pronephros of the treated animals had 

depressed phagocytic function relative to control fish. Toxicity of CPF to the early 

stages of eastern rainbowfish Melanotaenia splendid splendida was investigated by 

Humphrey and Klumpp (2003). They reported that body length of larvae and otolith 

perimeter after 14-d exposure were significantly reduced at a CPF concentration of 

6.2 µg/L. The increased water temperature greatly increased mortality in CPF 

exposures, probably because of increased metabolic rate at higher temperatures and 

consequently the increased uptake of the chemical by the fish. Gruber and Munn 

(1998) investigated ChE activity of common carp Cyprinus carpio from two lakes in 

the USA. They found that depressed activity in brain tissue was due to ChE-inhibiting 

insecticides (including CPF) detected in water samples in the weeks prior to tissue 

sampling. This study indicated that in the regions of intensive agriculture, non-target 

biota can be exposed to dangerous levels of pesticides for a period of several months, 

despite the fact that most of the organophosphate and carbamate insecticides break 

down rapidly in the environment. 
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Clark et al. (1985) investigated acute toxicity of different pesticides to six estuarine 

fishes in flow-through laboratory tests. Their 96-h LC50 values ranged from 1.3 µg/L 

for juvenile tidewater silverside Menidia peninsulae and juvenile California grunion 

Leuresthes tenuis to 520 µg/L for juvenile gulf toadfish Opsanus beta. The results 

show that sensitivity of fish to CPF is lower than that of invertebrates (Table 3.2, 

entries 74-79, also the references cited therein, entries 12, 70-71, 73). Moore et al. 

(1998) also showed in their study that invertebrates H. azteca, C. tentans and D. 

magna were ≥200 times more sensitive to CPF than the vertebrate P. promelas (Table 

3.2, entries 53-55, 91). Amma and Konar (1996) studied effects of CPF exposure on 

fish, worm and plankton species (see Table, entries 7, 34, 84-90). The plankton was 

more susceptible (LC95=8.8 µg/L) than fish and worms (LC95=100.4-129 µg/L). The 

growth of fish was affected at all concentrations tested (5, 10, 16 and 20 µg/L). 

Respiratory and feeding rates of fish were significantly reduced at CPF exposure 

concentrations of 10-20 µg/L. The survival, and reproduction of fish was greatly 

reduced starting at CPF exposure concentrations of 10 µg/L. Severe histopathological 

lesions occurred in liver, kidney and gills of fish at CPF exposure concentrations of 

10 and 20 µg/L. Water quality parameters (DO, free CO2, pH, alkalinity, colour and 

odour) were not affected by CPF. Though these authors conclude that CPF appears to 

be highly hazardous to fish and fish food organisms, the concentrations of CPF tested 

in their study are quite high compared to other data (Table 3.2) and are not 

environmentally realistic. Van Wijngaarden et al. (1993) (Table 3.2, entries 5, 8, 15-

31, 67, 82-83) reported on 16 single-species toxicity tests, which they performed with 

invertebrates, fish and a newt. They found that within the crustaceans the most 

susceptible (G. pulex) and the most tolerant species (P. coxalis) differ by a factor of 
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103 (Table 3.2, entries 23 and 22). It was also shown that toxicity of CPF to even 

closely related taxa (A. aquaticus and P. coxalis) could differ by at least an order of 

magnitude (Table 3.2, entries 21 and 22). It “indicates that even to closely related 

species, extrapolation of toxicological data of tested species for ecotoxicological risk 

cannot as yet be assessed on a scientific basis”. 

 

3.2.5 Effect of chlorpyrifos on water communities. 

 

Mani and Konar (1988) studied the effect of CPF exposure on water quality 

parameters and biota in experimental earthen vats. The vats were exposed six times 

with 15-d intervals. The duration of exposure is not clear from the paper. Probably it 

was a single-event application repeated after 15 days six times. There were no 

significant changes in water quality (DO, CO2, alkalinity or pH) after 90 days of the 

experiment, except at an exposure concentration of 20 µg/L. Significant reduction in 

zooplankton occurred at all exposure concentrations (5, 10, 16 and 20 µg/L), while 

the phytoplankton population remained unaffected. Chironomid larvae were 

significantly affected by exposure concentrations >10 µg/L. Monitoring of CPF 

degradation was not conducted. 

 

Kersting and van Wijngaarden (1992) studied the effect of CPF on a three-level 

microecosystem. The three subsystems represented different trophic levels – primary 

producers (algae), herbivores (Daphnia magna), and decomposers (bacteria on a sand 

filter). In a single species chronic exposure they found no negative effect on survival 

and number of offspring per female at nominal concentrations of CPF up to 0.1 µg/L. 

It should be noted that in a separate test it was found that the presence of algae 
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considerably reduced the residence time of CPF in the test solution (half life of 17 h 

compared to 2-5 days in the acute test without feeding). Therefore, the authors 

concluded, that the nominal concentration should be considered as an overestimate of 

the actual concentrations by about 40%. In a microcosm exposure (4.8µg of CPF was 

introduced to a 6-L first level subsystem, creating the concentration of CPF in the first 

level of 0.8 µg/L), there was no measurable impact for two weeks on the algae. 

However after this, the algal biomass started to fluctuate with a strongly increased 

amplitude and lower level, when compared to those of controls and the pre-treatment 

period. Initial concentration of CPF in the second level subsystem was around 0.4 

µg/L. There was an immediate effect of CPF on Daphnia survival. Though the culture 

recovered after the perturbation with CPF, the Daphnia populations became unstable, 

showing larger oscillations at lower numbers. This pattern continued through till the 

end of the study (100 days). These effects were consistent with the pH changes in the 

subsystems. The authors concluded that the observed drop in pH (2 units) could 

increase the half-life of CPF by an order of magnitude. They speculate that 

ecosystems can be changed by a perturbation of CPF in such a way that they do not 

return to their original states whenever the perturbation ceases. Kersting (1995) found 

that the effect of pH reduction by two units in tests with CPF was due to acetone used 

as a vehicle for the insecticide (concentration of acetone was 0.07 ml/L). The decrease 

started 2 weeks after the introduction, and recovery of pH to the pre-treatment level 

took several months. 

 

 
Van den Brink et al. (1995) studied the effects of chronic low concentrations of 

chlorpyrifos (0.1 µg/L) in indoor freshwater microcosms (abundance of a species was 

an end point). They tested whether the safety factor of 0.1 of L(E)C50 is sufficient to 
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protect aquatic communities in a case of chronic exposure. CPF treatment during 

seven weeks resulted in primary effects on the zooplankton taxa Cyclopoida and 

Daphnia galeata and the macroinvertebrate Gammarus pulex, and secondary effects 

on the rotifer Keratella quadrata. The authors concluded that a safety factor of 0.1 

appeared to be insufficient to protect the aquatic community. They suggested that a 

safety factor of 0.01 to be multiplied by the EC50 of the most susceptible standard 

species (or 0.1 of NOEC) is more appropriate for protection in the case of chronic 

exposure to CPF. Van den Brink et al. (1995) studied further the effect of CPF on 

invertebrate community responses and recovery in outdoor experimental ditches. 

Crustacea and Insecta showed a rapid concentration-dependent decrease in numbers 

after application (direct effects). An increase in gastropods and Oligochaeta was 

observed, suggesting indirect effects. The invertebrate community at all treatment 

levels was considered to have recovered 24 weeks post treatment. The recovery was 

found to be dependent on the susceptibility of the taxa and on ecological 

characteristics (e.g. the length of the life cycle: the longer life cycle, the more time 

needed for recovery). Authors derived a NOEC of 0.1 µg/L (concentration at time of 

application, single event) both at the species and the community level. 

 

Van Wijngaarden et al. (1996) studied the effect of single event CPF application on 

experimental outdoor mesocosms. Nominal initial concentrations of 0.1, 0.9, 6, and 

44 µg/L were tested. CPF concentrations showed highest spatial and temporal 

variation within 2 days of treatment. Acute effects were observed on arthropods only 

and were manifest on day 0, and negligible at the 0.1-µg/L treatment level. The 

authors concluded that a safety factor 0.1 (48-h LC50 of Daphnia magna - 1µg/L) may 

have protected almost all of the species in the mesocosm community against short-
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term direct effects, and a safety factor 0.01 probably protected the most susceptible 

taxa in their study (laboratory 96-h EC10 for Gammarus pulex, 0.02 µg/L). The 

question remains, however (they note), whether long-term (in)direct effects on the 

populations or the community may occur at the 0.1-µg/L treatment level (see also 

Table 3.2, entries 36-44). 

 

Rose et al. (2001) also determined in laboratory experiments that the presence of fish 

kairomones increased the sensitivity of cladocerans Ceriodaphnia sf. dubia to CPF 

with respect to survival, intrinsic rate of natural increase and reproductive parameters. 

It appears that in the natural environment the presence of fish (a predator) can result 

in a greater toxicity of CPF to cladocerans. 

 

Rose et al. (2002) found that interaction between algae and daphnia are important in 

determining toxicity of CPF to daphnia. Limited food significantly increased the 

toxicity of chlorpyrifos. The authors conclude that the effect of food concentration on 

toxicity appears to depend on the mechanism by which the chemical exerts its toxicity 

and on food-chemical interactions. 

 

3.2.6 Bioaccumulation and biomagnification of chlorpyrifos 

 

Deneer (1993) studied the uptake and elimination of CPF in the guppy at sublethal 

and lethal concentrations. He found that elimination through metabolic transformation 

was most important when dealing with relatively lipophilic substances (such as CPF), 

because for these substances the rate of elimination through passive diffusion is rather 

low. At high exposure levels, metabolic pathways may either become saturated or 
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inhibited, resulting in reduction of elimination rate (elimination rate coefficient for 

exposure concentration of 37 µg/L was 0.19 day-1, almost three times less than at an 

exposure concentration of 0.9 µg/L, which was 0.51 day-1). 

 

However, metabolism probably does not play a very important role in the elimination 

of CPF in the isopod Asellus aquaticus (Montañés et al. 1995). Though the 

elimination rate coefficient at high exposure concentration was 5 times lower than at a 

low exposure concentration, the uptake coefficient was 10 times lower respectively. 

The study indicated that isopods bioaccumulate CPF at higher levels than fish, and are 

therefore suitable for sampling in freshwater biomonitoring programmes to assess the 

fate and effects of organophosphorus compounds. 

 

Tilak et al. (2004) confirmed that after 8-d exposures at concentrations of 20% of the 

corresponding 96-h LC50, CPF was accumulating in brain (0.11-0.38 mg/g) and liver 

(0.08-0.09 mg/g) of three species of Indian carp. The authors speculated that 

biomagnification is also possible as a result of bioconcentration. 

 

Varo et al. (2000) conducted a bioconcentration study on a crustacean Artemia 

parthenogenetica and two species of fish and found that CPF had a high accumulation 

rate in both fish and the crustacean. They suggest that CPF presents a potential risk as 

it might have a biomagnification ability. 
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Table 3.2 Chlorpyrifos toxicity to different organisms, concentrations in µg/L unless otherwise specified, nc-nominal concentration, mc-

measured concentration 
Parameter   Chlorpyrifos formulation

 

1 

Species 

 

2 

Effect  measured 

 

3 

Name 

4 

Value 

5 

Reference 

 

6 

ALGAE 
1 Dursban® 4E Cyanobacterium 

Synechoccosus 
leopoliensis 

Significant culture 
growth rate difference: 

Non-limited growth 
P-limited growth 

 
 

Growth reduction 
Growth reduction 

 
 

>10000 
>10000 

Van Donk et al., 1992 

2 
 

Dursban®  Marine diatom 
Skeletonema costatum 

Cell death 48-h EC50 1200 nc Walsh, 1983 

3 Dursban® 4E Freshwater diatom 
Cyclotella sp. 

Significant culture 
growth rate reduction: 
Non-limited growth 

P-limited growth 

 
 

Growth reduction 
Growth reduction 

 
 

>320 
>100 

Van Donk et al., 1992 

4 Dursban® 4E Green alga  
Selenastrum 

capricornutum 

Significant culture 
growth rate reduction: 
Non-limited growth 

P-limited growth 

 
 

Growth reduction 
Growth stimulation 

 
 

>1000 
>30 

Van Donk et al., 1992 

INVERTEBRATES 
5 Dursban®4E in tapwater Oligochaete 

Limnodrilus 
hoffmeisteri 

Movement & breakage 96-h EC10 
semi-static 

>36 mc Van Wijngaarden et 
al., 1993 

6 
 

Dursban  Rotifer
Brachionus 
calyciflorus 

72-h reproduction 
asecxual 

 
 
 

sexual 

NOEC 
LOEC 

Chronic value (geometric 
mean of NOEC and LOEC) 

NOEC 
LOEC 

Chronic value (geometric 
mean of NOEC and LOEC) 

300 nc 
400 nc 
350 nc 

 
200 nc 
300 nc 
240 nc 

 

Snell & Carmona, 
1995 
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7 Chlorpyrifos    Worm
Branchiura sowerbyi 

Survival 96-h LC5 
96-h LC50 
96-h LC95

3 
66 

100.4 

Amma & Konar, 1996 

8 Chlorpyrifos solution in acetone Gastropoda 
Anisus vortex, 

Bithynia tentaculata, 
Lymnaea stagnalis 

No movement >24 h 96-h EC10 >94 mc Van Wijngaarden et 
al., 1993 

9 Chlorpyrifos   Stonefly 
P. badia 

Survival 24-h LC50 4.2 Sanders & Cope, 
1968  

10 Chlorpyrifos      Amphipod
Gammarus lacustris 

Survival 96-h LC50 0.11 Sanders,
1969  

11 Chlorpyrifos     Mysid
Americamysis bahia 

Survival 96-h LC50 0.04 Schimmel et al., 1983  

12 Chlorpyrifos     Crustacean
Mysidopsis bahia 

Survival 96-h LC50 0.035 Schimmel et al., 1983  

13 Chlorpyrifos      Crayfish
Procambarus clarkii 

Survival 96-h LC50 21.0 Cebrian et al., 
1992  

14 Chlorpyrifos in acetone Cladoceran 
Daphnia magna 

Survival  24-h LC50  
48-h LC50

3.7 (2.5-5.9) nc 
1.0 (1.0-1.1) nc 

Kersting & van 
Wijngaarden, 1992 

15 Chlorpyrifos      Mysid
Neomysis mercedis 

Survival 96-h LC50 0.15 CDFG,
1993  

16 Chlorpyrifos      Shrimp
Palaemonetes pugio 

Survival 96-h LC50 0.44 Key & Fulton,
1993  

17 Dursban®4E Cladoceran  Ability to maintain in 
suspension Daphnia longispina 

48-h EC10
96-h EC10
48-h EC50
96-h EC50

0.2(0.2-0.3) mc 
0.2 mc 

0.3(0.3-0.3) mc 
0.3 mc 

Van Wijngaarden et 
al., 1993 

18 Dursban®4E     Cladoceran
Daphnia longispina 

Survival 48-h LC10
96-h LC10
48-h LC50
96-h LC50

0.2(0.2-0.7) mc 
0.2 mc 

0.8(0.6-1.0) mc 
0.3 mc 

Van Wijngaarden et 
al., 1993 

19 Dursban®4E Cladoceran Ability to maintain in 
suspension Simocefalus vetulus 

48-h EC10
96-h EC10
48-h EC50
96-h EC50

0.3(0.2-0.4) mc 
0.3(0.2-0.4) mc 
0.4(0.4-0.5) mc 
0.4(0.3-0.5) mc 

Van Wijngaarden et 
al., 1993 
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20 Dursban®4E    Cladoceran
Simocefalus vetulus 

Survival 48-h LC10
96-h LC10
48-h LC50
96-h LC50

0.4(0.3-0.7) mc 
0.3(0.2-0.5) mc 
0.8(0.7-0.9) mc 
0.5(0.4-0.6) mc 

Van Wijngaarden et 
al., 1993 

21 Chlorpyrifos solution in acetone Isopoda 
Asellus aquaticus 

Response to tactile 
stimulus 

48-h EC10
96-h EC10
48-h EC50
96-h EC50

2.0(1.2-4.3) mc 
1.4(1.8-3.0) mc 
4.3(3.3-5.6) mc 
2.7(2.1-3.6) mc 

Van Wijngaarden et 
al., 1993 

22 Dursban®4E  Isopoda
Proasellus coxalis 

Response to tactile 
stimulus 

96-h EC10 >20 mc Van Wijngaarden et 
al., 1993 

23 Dursban®4E    Amphipoda
Gammarus pulex 

Survival 48-h LC10
96-h LC10
48-h LC50
96-h LC50

0.03(0.01-0.07) mc 
0.02(0.01-0.05) mc 
0.08(0.05-0.14) mc 
0.07(0.04-0.11) mc 

Van Wijngaarden et 
al., 1993 

24 Dursban®4E  Heteroptera
Corixa punctata 

Trembling of 
extremities 

48-h EC10
96-h EC10
48-h EC50
96-h EC50

2.2(1.6-3.3) mc 
1.0(0.6-2.0) mc 
3.2(2.4-4.3) mc 
1.7(1.1-2.5) mc 

Van Wijngaarden et 
al., 1993 

25 Dursban®4E    Heteroptera
Corixa punctata 

Survival 48-h LC10
96-h LC10
48-h LC50
96-h LC50

2.2(1.3-3.8) mc 
1.0(0.7-1.6) mc 
6.0(4.2-8.5) mc 
2.0(1.5-2.6) mc 

Van Wijngaarden et 
al., 1993 

26 Dursban®4E Ephemeroptera Response to tactile 
stimulus Cloeon dipterum 

48-h EC10
96-h EC10
48-h EC50
96-h EC50

0.3(0.2-0.4) mc 
0.1(0.1-0.2) mc 
0.4(0.3-0.4) mc 
0.2(0.2-0.2) mc 

Van Wijngaarden et 
al., 1993 

27 Dursban®4E    Ephemeroptera
Cloeon dipterum 

Survival 48-h LC10
96-h LC10
48-h LC50
96-h LC50

0.3(0.2-0.9) mc 
0.1(0.1-0.3) mc 
1.0(0.8-1.4) mc 
0.3(0.2-0.3) mc 

Van Wijngaarden et 
al., 1993 

28 Dursban®4E Ephemeroptera Response to tactile 
stimulus Caenis horaria 

48-h EC10
96-h EC10
48-h EC50
96-h EC50

0.6(0.3-0.9) mc 
0.3(0.3-0.6) mc 
0.7(0.6-0.8) mc 
0.5(0.4-0.6) mc 

 

Van Wijngaarden et 
al., 1993 
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29 Dursban®4E    Ephemeroptera
Caenis horaria 

Survival 96-h LC10 >3 mc Van Wijngaarden et 
al., 1993 

30 Dursban®4E  Diptera
Chaoborus obscuripes 

Response to tactile 
stimulus 

48-h EC10
96-h EC10
48-h EC50
96-h EC50

0.6(0.4-1.2) mc 
0.3(0.2-0.6) mc 
1.4(1.1-1.7) mc 
0.7(0.6-0.8) mc 

Van Wijngaarden et 
al., 1993 

31 Dursban®4E    Diptera
Chaoborus obscuripes 

Survival 96-h LC10
96-h LC50

2.5(1.7-7.5) mc 
6.6(3.0-14.6) mc 

Van Wijngaarden et 
al., 1993 

32 Chlorpyrifos    Midge
Chironomus tentans 

Survival 10-d LC50 0.07 Ankley et al., 1994  

33 Chlorpyrifos    Amphipod
Hyalella  azteca 

Survival 10-d LC50 0.086 
 

Phipps et al., 1995  
 

34 Chlorpyrifos    Calanoid copepod
Diaptomus forbesi 

Survival 96-h LC5 
96-h LC50 
96-h LC95

<0.1 
3.6 
8.8 

Amma & Konar, 1996 

35 Chlorpyrifos    Cladoceran
Ceriodaphnia dubia 

Survival 96-h LC50 0.06 (0.04-0.07) 
 

Bailey et al, 1996 

36 Dursban® 4E Mayfly 
Cloeon dipterum 

Immobility  Lab 48-h EC10 
Lab 48-h EC50
Lab 96-h EC10
Lab 96-h EC50

Cage 48-h EC10
Cage 48-h EC50
Mesocosm EC10
Mesocosm EC50

0.3(0.2-0.4) nc 
0.4(0.3-0.4) nc 
0.1(0.1-0.2) nc 
0.2(0.2-0.2) nc 

0.1(0.04-0.40) nc 
0.4(0.21-0.60) nc 
0.2(0.07-0.74) nc 
0.3(0.17-0.50) nc 

Van Wijngaarden et 
al., 1996 

37 Dursban® 4E Ephemeroptera 
Caenis horaria 

Immobility  Lab 96-h EC10
Lab 96-h EC50

Mesocosm EC10
Mesocosm EC50

0.3(0.3-0.6) nc 
0.5(0.4-0.5) nc 

0.3(0.13-0.54) nc 
0.4(0.25-0.50) nc 

Van Wijngaarden et 
al., 1996 

38 Dursban® 4E Crustacean 
Asellus aquaticus 

Immobility  Lab 48-h EC10 
Lab 48-h EC50
Lab 96-h EC10
Lab 96-h EC50

Cage 48-h EC10
Cage 48-h EC50

2.0(1.2-4.3) nc 
4.3(3.3-5.6) nc 
1.8(1.4-3.0) nc 
2.7(2.1-3.6) nc 

1.2(0.56-3.71) nc 
3.4(2.22-5.13) nc 

Van Wijngaarden et 
al., 1996 
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39 Dursban® 4E Crustacean 
Gammarus pulex 

Immobility  Cage 48-h EC10
Cage 48-h EC50

0.1(0.08-0.34) nc 
0.3(0.24-0.45) nc 

Van Wijngaarden et 
al., 1996 

40 Dursban® 4E Damselfly 
Coenagrionidae spp. 

Immobility  Mesocosm EC10
Mesocosm EC50

0.1(0.00-33.3) nc 
0.5(0.02-12.8) nc 

Van Wijngaarden et 
al., 1996 

41 Dursban® 4E Chironomid 
Ablabesmia spp. 

Immobility  Mesocosm EC10
Mesocosm EC50

2.7(1.08-7.00) nc 
2.8(1.41-5.75) nc 

Van Wijngaarden et 
al., 1996 

42 Dursban® 4E Midge 
Chaoborus obscuripes 

Immobility  Lab 48-h EC10 
Lab 48-h EC50
Lab 96-h EC10
Lab 96-h EC50

Cage 48-h EC10
Cage 48-h EC50
Mesocosm EC10
Mesocosm EC50

0.6(0.4-1.2) nc 
1.4(1.1-1.7) nc 
0.3(0.2-0.6) nc 
0.7(0.6-0.8) nc 

0.4(0.05-1.96) nc 
0.5(0.17-1.60) nc 

0.4 
0.4 

 

Van Wijngaarden et 
al., 1996 

43 Dursban® 4E Caddisfly Mystacides 
spp. 

Immobility  Mesocosm EC10
Mesocosm EC50

0.01(0.00-1.98) nc 
0.1(0.01-1.01) nc 

 

Van Wijngaarden et 
al., 1996 

44 Dursban® 4E Cladoceran 
Simocephalus vetulus 

Immobility  Lab 96-h EC10
Lab 96-h EC50

Mesocosm EC10
Mesocosm EC50

0.3(0.2-0.4) nc 
0.4(0.3-0.5) nc 

0.3(0.00-23.9) nc 
0.6(0.02-16.7) nc 

 

Van Wijngaarden et 
al., 1996 

45 Dursban®4E in demineralized 
water 

Cladoceran 
Daphnia pulex 

(juvenile) 

Survival  24-h LC50  
48-h LC50 
72-h LC50 
144-h LC50 
192-h LC50 
240-h LC50

2.9 nc 
0.25 nc 
0.23 nc 
0.17 nc 
0.19 nc 
0.17 nc 

Van der Hoeven & 
Gerritsen, 1997 

46 Dursban®4E in demineralized 
water 

Cladoceran 
Daphnia pulex 

(adult) 

Survival  24-h LC50  
48-h LC50 
72-h LC50 
144-h LC50 
192-h LC50

>1.6 nc 
>1.6 nc 
>1.6 nc 
0.48 nc 
0.33 nc 

 

Van der Hoeven & 
Gerritsen, 1997 
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47 Dursban®4E in demineralized 
water 

Cladoceran 
Daphnia pulex 

(juvenile) 

Immobilization  24-h EC50  
48-h EC50 
72-h EC50 
144-h EC50 
192-h EC50 
240-h EC50

0.42 nc 
0.21 nc 
0.18 nc 
0.17 nc 
0.19 nc 
0.17 nc 

Van der Hoeven & 
Gerritsen, 1997 

48 Dursban®4E in demineralized 
water 

Cladoceran 
Daphnia pulex 

(adult) 

Immobilization  24-h EC50  
48-h EC50 
72-h EC50 
144-h EC50 
192-h EC50

1.1 nc 
0.80 nc 
0.72 nc 
0.43 nc 
0.28 nc 

Van der Hoeven & 
Gerritsen, 1997 

49 Technical grade chlorpyrifos Cladoceran 
Daphnia pulex 

(juvenile) 

Survival  24-h LC50  
48-h LC50

4.9 nc 
0.30 nc 

Van der Hoeven & 
Gerritsen, 1997 

50 Technical grade chlorpyrifos Cladoceran 
Daphnia pulex 

(juvenile) 

Immobilization  24-h EC50  
48-h EC50

0.42 nc 
0.25 nc 

Van der Hoeven & 
Gerritsen, 1997 

51 Chlorpyrifos     Amphipod
Hyalella  azteca 

Survival 48-h LC50 0.1 Moore et al., 1998  

52 Chlorpyrifos     Midge
Chironomus tentans 

Survival 48-h LC50 0.3 Moore et al., 1998  

53 Lorsban™ Cladoceran  
Daphnia magna 

Survival  48-h LC50 06±0.04 Moore et al., 1998 

54 Lorsban™ Amphipod 
Hyalella azteca 

Survival  48-h LC50 0.1±0.04 Moore et al., 1998 

55 Lorsban™ Midge 
Chironomus tentans 

Survival  48-h LC50 0.3±0.07 Moore et al., 1998 

56 Chlorpyrifos solution in acetone Mysid 
Neomysis interger 

Survival  96-h LC50 : 
semi-static 

 flow-through (adults) 
 flow-through (juvenile) 

 
0.15 (0.08-0.31) nc 
0.13 (0.11-0.16) nc 
0.19 (0.16-0.23) nc 

Roast et al., 
1999 

57 Chlorpyrifos   Crustacean
Artemia 

parthenogenetica 

Survival: 
Nauplii 

Juveniles 
Adults 

24-h LC50  
>18000 nc 

3900±900 nc 
80±10 nc 

Varo et al., 2000 
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58 DursbanTM Cladoceran  
Daphnia magna 

Survival  48-h LC50 0.42 nc Schulz, 2001 

59 DursbanTM Amphipod  
Paramelita nigroculus 

Survival  24-h LC50 0.9 (0.3-1.6) nc Schulz, 2001 

60 Chlorpyrifos in acetone Brine shrimp 
Artemia salina 

Survival  24-h LC50  3190(1350-6340) nc Varo et al., 2002 

61 Chlorpyrifos in acetone Brine shrimp 
Artemia 

parthenogenetica 

Survival  24-h LC50  >18000 nc Varo et al., 2002 

62 Dursban XP Cladoceran 
Ceriodaphnia dubia 

Survival  48-h LC50 0.056 (0.054-0.059) 
mc 

 

Harmon et al, 2003 

63 Dursban XP Cladoceran  
Daphnia ambigua 

Survival  48-h LC50 0.035 (0.032-0.037) 
mc 

 

Harmon et al, 2003 

64 Technical grade chlorpyrifos in 
acetone 

Cladoceran 
Ceriodaphnia dubia 

Survival  48-h LC50 0.05 (0.048-0.053) El-Merhibi et al., 
2004 

65 Chlorpyrifos in ethanol Cladoceran  
Daphnia magna 

Immobilization 
AchE activity 

48-h EC50
48-h IC50

3.14 (2.62-3.71) pM 
1.40±0.06 pM 

 

Printes & Callaghan, 
2004 

AMPHIBIANS 
66 Dursban®4E  Newt

Triturus vulgaris 
Locomotional 

behaviour 
96-h EC10 >96 mc 

 
 

Van Wijngaarden et 
al., 1993 

67 Technical grade chlorpyrifos in 
acetone 

Clawed frog Xenopus 
laevis 

Survival 
 

Malformation 
 

AchE activity 
reduction 

96-h LC50 
10-d LC50 
96-h EC50 
10-d EC50 
96-h EC50 
10-d EC50

2410 (2135-2722) 
511  
92.5 
35 

~25 
~50 

El-Merhibi et al., 
2004 

FISH 
68 DursbanTM Rainbow trout 

Oncorhynchus mykiss 
Survival  96-h LC50 9 nc Schulz, 2001 

69 Chlorpyrifos     Rainbow trout 
(1.4 g) 

Survival 96-h LC50 7.1 Macek et al., 1969  
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70 Chlorpyrifos    Fish
Morone saxalitis 

Survival 96-h LC50 0.58 Korn & Earnest, 1974  

71 Chlorpyrifos       Fish
Fundulus heteroclitus 

Survival 96-h LC50 4.7 Thirugnanam &
Forgash, 1977  

72 Chlorpyrifos    Channel catfish 
(0.8 g) 

Survival 96-h LC50 280 Johnson & Finley, 
1980  

73 Chlorpyrifos     Fish
Mugil cephalus 

Survival 96-h LC50 5.4 Schimmel et al., 1983  

74 Chlorpyrifos    Sheepshead minnows
Cyprinodon variegates 

(juvenile) 

Survival 96-h LC50 
(flow-through system) 

136 (113-153) Clark et al., 1985 

75 Chlorpyrifos    Atlantic silverside
Menidia menidia 

(juvenile) 

Survival 96-h LC50 
(flow-through system) 

1.7 (1.4-2.0) Clark et al., 1985 

76 Chlorpyrifos    Tidewater silverside
Menidia peninsulae 

(juvenile) 

Survival 96-h LC50 
(flow-through system) 

 
 

1.3 (1.0-1.7) Clark et al., 1985 

77 Chlorpyrifos   Inland silver side 
Menidia beryllina 

(juvenile) 
 

Survival 96-h LC50 
(flow-through system) 

4.2 (3.4-5.4) Clark et al., 1985 

78 Chlorpyrifos    California grunion
Leuresthes tenuis 

(juvenile) 
 

Survival 96-h LC50 
(flow-through system) 

1.3 (1.0-1.7) Clark et al., 1985 

79 Chlorpyrifos    Gulf toadfish
Opsanus beta 

(juvenile) 

Survival 96-h LC50 
(flow-through system) 

520 (450-600) Clark et al., 1985 

80 Chlorpyrifos in acetone Freshwater catfish 
Heteropneustes fossilis 

Kidney histopathology Shrinkage of glomerular 
tuft 

Vacuolation of blood cells  
in the glomerular tuft 

Dilation of the lumina of 
the renal tubules 

72-h exposure to 
2mg/L of CP 

 

Srivastava et al., 1990 
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81 Chlorpyrifos in acetone Eel 
Anguilla anguilla 

Survival  24-h LC50  
48-h LC50 
72-h LC50 
96-h LC50  

1290 (1110-1670) 
690 (560-900) 
590 (480-710) 
540 (420-650) 

Ferrando et al., 1991 

82 Dursban®4E    Gasterosteiformes
Gastrosteus aculeatus 

Survival 48-h LC10
96-h LC10
48-h LC50
96-h LC50

4.5(2.3-13.7) mc 
3.8(2.0-9.2) mc 

13.4(9.0-19.9) mc 
8.5(6.2-11.9) mc 

 

Van Wijngaarden et 
al., 1993 

83 Chlorpyrifos solution in acetone Gasterosteiformes 
Pungitius pungitius 

Survival  48-h LC10
96-h LC10
48-h LC50
96-h LC50

2.3(1.3-5.5) mc 
2.1(1.3-4.6) mc 
5.7(4.4-7.5) mc 
4.7(3.6-6.0) mc 

 

Van Wijngaarden et 
al., 1993 
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Chlorpyrifos    Fish
Oreochromis 
mossambicus 

 

Survival 96-h LC5 
96-h LC50 
96-h LC95

1 
52 
129 

Amma & Konar, 1996 

85 Chlorpyrifos  Fish
Oreochromis 
mossambicus 

 

Respiratory rate Opercular movement 
significant reduction 

10 Amma & Konar, 1996 

86 Chlorpyrifos  Fish
Oreochromis 
mossambicus 

 

Feeding rate  <5 Amma & Konar, 1996 

87 Chlorpyrifos    Fish
Oreochromis 
mossambicus 

Behaviour Lethargy
Number of nests significant 

reduction 

10 
10 

Amma & Konar, 1996 

88 Chlorpyrifos  Fish
Oreochromis 
mossambicus 

Growth significant 
reduction 

 <5 Amma & Konar, 1996 
 

89 Chlorpyrifos    Fish
Oreochromis 
mossambicus 

Reproduction Condition factor
Fecundity 

 

10 
10 

Amma & Konar, 1996 
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90 Chlorpyrifos  Fish
Oreochromis 
mossambicus 

Histopathology Vacuolation and swelling 
of liver cells 

Nuclear swelling and 
disintegration 

Abnormal morphology of 
liver cells 

Abnormal morphology of 
uriniferous tubules 

Breakage of intestinal villi 
Breakage of gill lamellae 

Thickening of gill lamellae 
Disintegration of lamellar 

epithelium 

10 
 

10 
 

20 
 

16 
 

20 
5 

16 
20 

 

Amma & Konar, 1996 

91 Lorsban™ Fathead minnow 
Pimephales promelas 

 

Survival  48-h LC50 162.7±13.7 Moore et al., 1998 

92 Chlorpyrifos    Mosquitofish
Gambusia affinis 

Survival 48-h LC50 
72-h LC50 
96-h LC50

520±60 nc 
540±50 nc 
520±50 nc 

Varo et al., 2000 

93 Chlorpyrifos   Fartet Aphanius iberus Survival 48-h LC50 
72-h LC50

38.6±7.2 nc 
18.01±0.02 nc 

Varo et al., 2000 

94 Lorsban Guppy Poecilla 
reticulata 

Survival 
Malformations 

Paralysis 
Hemorrhage 

 

96-h LC50  
14-d EC50  
14-d EC50 
14-d EC50

7.17 
1.0 

between 0.5 & 1.0 
between 1.0 & 2.0 

De Silva & 
Samayawardhena, 

2002 

95 Technical grade chlorpyrifos in 
acetone 

Rainbowfish 
Melanotaenia 

splendida splendida 

Survival: 
Eggs prior fertilizing 
Eggs after fertilizing 

16-d old larvae 
adults 

 

 
96-h LC50 
96-h LC50 
96-h LC50 
96-h LC50

 
23 

2019 
117 
396 

Humphrey & 
Klumpp, 2003 

96 Chlorpyrifos  Tilapia Oreochromis 
mossambicus 

 

Survival  96-h LC50 25.97 (19.7-32.0) Rao et al., 2003 
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97 Technical grade chlorpyrifos in 
acetone 

Indian carp Catla catla Survival: 
Static 

 
 
 

Flow-through 

 
24-h LC50 
48-h LC50 
72-h LC50 
96-h LC50 
24-h LC50 
48-h LC50 
72-h LC50 
96-h LC50

 
510 
460 
420 
350 
460 
380 
350 
300 

Tilak et al., 2004 

98 Technical grade chlorpyrifos in 
acetone 

Indian carp Labeo 
rohita 

Survival 
Static 

 
 
 

Flow-through 

 
24-h LC50 
48-h LC50 
72-h LC50 
96-h LC50 
24-h LC50 
48-h LC50 
72-h LC50 
96-h LC50

 
740 
660 
560 
470 
580 
480 
400 
300 

Tilak et al., 2004 

99 Technical grade chlorpyrifos in 
acetone 

Indian carp Cirrihinus 
mrigala 

Survival 
Static 

 
 
 

Flow-through 

 
24-h LC50 
48-h LC50 
72-h LC50 
96-h LC50 
24-h LC50 
48-h LC50 
72-h LC50 
96-h LC50

 
940 
840 
760 
650 
850 
450 
660 
550 

Tilak et al., 2004 

100 Lorsban  Mosquitofish
Gambusia yucatana 

Survival 
Muscle AchE activity 

96-h LC50 
96-h EC50

11 (8-17) 
11 (8-14) 

Rendon-von Osten et 
al., 2005 
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CHAPTER 4 

MAINTENANCE OF TEST ORGANISMS 

 

4.1 MAINTENANCE OF ALGAL CULTURES 

 

SUMMARY 

 

Three species of algae were used in various experiments and for maintenance of D. 

carinata cultures: Chlorella vulgaris, Chlorella pyrenoidosa and Pseudokirchneriella 

subcapitata. Batch cultures were used for maintenance of the algae, grown in flasks 

on a light-table. Sub-culturing was conducted once a week or as required. Two media 

were used for maintenance of these cultures: Tamiya (Vasser 1989) and Keating 

(1985). The recipes for media preparation are contained in Appendix 2. 

 

4.1.1 Test species 

 

Three species of unicellular freshwater green algae were used in the study: Chlorella 

vulgaris (Fig. 4.1.1) was obtained from North Carolina, USA, Chlorella pyrenoidosa 

(Fig. 4.1.2) from Southern Biological  (Nunawading, Victoria, Australia) and 

Pseudokirchneriella subcapitata (former Selenastrum capricornutum) (Fig. 4.1.3) was 

obtained from Michael J. Barry (then Victoria University, St. Albans, Victoria, 

Australia). All three species are representatives of Australian freshwaters (Day et al. 

1995), and two of three species were collected locally in Victoria, Australia. 
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Figure 4.1.1 Cells of Chlorella vulgaris.  

Image from http://shigen.lab.nig.ac.jp/algae/images/strainsimage/nies-0642.jpg. 
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Figure 4.1.2 Cells of Chlorella pyrenoidosa. Image from 

http://www1.ocn.ne.jp/~bio-soci/chlorella.htm. 
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Figure 4.1.3 Cells of Pseudokirchneriella subcapitata. 

Image from http://shigen.lab.nig.ac.jp/algae/images/strainsimage/nies-0035.jpg. 
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4.1.2 Methods 

 

Algae were cultured in cotton-stoppered 500-mL conical flasks with 300 mL of 

medium on a light table (luminosity 3000±10 lux, continuous (no photoperiod) 

measured with a flat collector, temperature 25±1oC). Cultures were aerated 

continuously with filtered air. The setup for culturing algae is presented in Fig. 4.1.4.  

 

The algal cultures were sub-cultured once a week. An aliquot of 10 mL of culture 

from the exponential phase of growth was taken and placed in a sterile medium in a 

laminar flow cabinet to minimize contamination. While there would likely always 

have been a small amount of bacteria present in the cultures, the purity of a single 

species culture was maintained throughout the study.  

 

Chlorella sp were maintained in Tamiya medium (Vasser 1989), as this medium was 

well-suited for these species (see Appendix 1 for recipe). However later for the 

purpose of feeding Daphnia, C. pyrenoidosa was also cultured in Keating (1985) algal 

medium. For maintenance of P. subcapitata also Keating algal medium was used (see 

Appendix 1 for recipe). 

 

When algae were used to feed animals, after culturing, the flasks were placed into a 

refrigerator for algae to settle overnight, then the supernatant was discarded and a 

dense culture of algae from the exponential stage of growth fed to Daphnia as 

required. When there was no requirement for algae for an extended period of time, 

cultures were kept in a refrigerator at 4oC as dense culture or paste, and later 

reconstituted and sub-cultured as necessary.  
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Figure 4.1.4 Setup for culturing algae on a light table. 
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4.2 MAINTENANCE OF DAPHNIA CARINATA CULTURE FOR 

USE IN TOXICITY TESTING 

Published as: 

Maintenance of Daphnia carinata culture for use in toxicity testing. 

L. Zalizniak and D. Nugegoda 

Australasian Journal of Ecotoxicology (2004) 10: 65-69. 

 

SUMMARY 

 

A growing concern for use of local species for toxicity testing leads to the need to 

create the toxicity data banks for these species. In order to have healthy animals to 

conduct the tests, procedures for maintenance of stock cultures of these species should 

be developed. The most widespread daphnid in Australia, Daphnia carinata, is 

considered to be one of the most suitable for toxicity testing of contaminants entering 

Australian freshwaters. However very little data is available on the culture 

requirements of the species. In this study different types of food were tested: 

Chlorella vulgaris cultured in two different media - Keating and Tamiya, Chlorella 

pyrenoidosa cultured in the same two media, and a suspension of trout pellets. 

Intrinsic rates of natural increase of individual cultures of D. carinata were 

determined from "life tables". The best food from among those tested were C. 

pyrenoidosa cultured in either Keating or Tamiya medium. Two different procedures 

of individual cultures are proposed for the maintenance of D. carinata for use in 

toxicity testing, based on tests conducted using different culture volumes. 
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4.2.1 Introduction 

 

Cladocerans of Daphnia species have been widely used for many years as test 

organisms for toxicity testing under laboratory conditions. Different guidelines for 

testing of chemicals are used in different countries (US EPA, OECD Guidelines, 

National standards etc.), and Daphnia magna and Daphnia pulex are among the most 

frequently used species in the northern hemisphere. A considerable amount of toxicity 

data is available on these species together with requirements for their cultures (Lee et 

al. 1985, Elendt 1990a, 1990b, Elendt & Bias 1990). In Australia and South-East Asia 

the most abundant and widely distributed daphnid is Daphnia carinata (Benzie 1988).  

A growing concern for use of local species in ecotoxicology creates an agenda for 

establishing toxicity data for such species. In Australia Ceriodaphnia dubia is 

commonly used for toxicity testing (Rose et al. 2004, Warne and Schifko 1999, NSW 

EPA 1999, 2003a). However very little data is available not only on toxicity testing, 

but also on the culture and requirements of the common Australian cladoceran D. 

carinata (NSW EPA 2003b). In our study we tested several experimental procedures 

in order to choose the most suitable among them (in terms of medium, volume 

requirements and food type) for culturing D. carinata for use in toxicity testing.  

 

4.2.2 Methods 

 

Our experiments consisted of three parts: 

1. Growth rates of algae in two culture media 

2. Effects of different diets on daphnid survival and reproduction 

3. Effects of culture volume on daphnid survival and reproduction 
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Experiment 1. Growth rates of algae in two culture media 

Two species of freshwater green unicellular alga Chlorella vulgaris and Chlorella 

pyrenoidosa were cultured in order to determine their growth rates. Two different 

media were used for culturing each of the species: (a) Keating MS medium with low 

concentrations of nutrients and pH=8.0 (Keating 1985) and (b) Tamiya medium with 

high concentrations of nutrients and pH=5.0 (cited in Vasser 1989).  

 

Algae were cultured axenically in cotton-stoppered 250-mL conical flasks on a light 

table (luminosity 3000±10 lux, continuous (no photoperiod), temperature 25±1oC). 

Cultures were aerated continuously using aquarium air pumps. There were four 

replicates of each culture (16 total). Cell density was counted every six hours for 60 

hours, using a haemocytometer. On each occasion four subsamples of 0.01 cm3 were 

taken from each replicate and all algal cells in the grid were counted. 

Growth rates of the cultures (µ) were calculated as 

µ=(lnNt - lnNt-1)/∆t 

where  Nt is algal cell density at time t, 

 Nt-1 is algal cell density at time of previous observation, 

 ∆t is time between the observations. 

Algae from the exponential phase of growth were then used as food for daphnids 

(along with trout pellets) in a feeding trial. 

 

Experiment 2. Effects of different diets on daphnid survival and reproduction. 

Female neonates of D. carinata (< 24 hours of age) were placed individually into 28-

mL McCartney bottles with 25 mL of medium in each. The medium was carbon-
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filtered tap water with 0.5 g/L of scientific grade sea salt "Coralife" (Coralife 

Scientific Grade Marine salt, Energy Savers Unlimited, Inc, Carson, CA USA) 

(nitrates and phosphates free). The temperature of the media was 25±1oC, 

pH=7.0±0.1, luminosity was maintained at 500 lux at daytime, photoperiod 15 h day/ 

9 h night. Twenty animals were tested for each type of food. The experiment was 

conducted for 21 days. Medium was replaced daily, daphnids were fed with algae or 

trout pellets once a day. Concentration of algae was 2×105 cells/mL when algae were 

added to the culture. The solution of trout pellets was prepared as follows (on 

recommendation from ARI, see acknowledgments): 20 g of trout pellets were ground 

and suspended in 150 mL of distilled water, then filtered 3 times using a fine strainer 

(pore size 140 µm). The suspension was then stored in the refrigerator for up to three 

weeks and used for the feeding trials. Daphnids were fed daily with 10 µL of the 

suspension. Survival and fecundity of females were recorded and the intrinsic rate of 

natural increase was computed using the Lotka formula (Lotka 1913): 

Σ lxmxe-rx=1, 

where  lx is the proportion of individuals surviving to age x, 

mx is the age specific fecundity (number of females produced per surviving 

female at age x), 

x is days 

 

The type of food that produced the best results in terms of intrinsic rate of natural 

increase was then used as food in the test of different culture volumes. 
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Experiment 3. Effects of culture volume on daphnid survival and reproduction 

Individual culture of D. carinata was proposed as an alternative to the use of cohorts 

for toxicity testing recommended by OECD (1996). In the chronic (21-day) toxicity 

test, according to the OECD guidelines, the volume of media provided per female 

should not be less than 40 mL (for D. magna), and it is recommended that the medium 

be replaced every other day (for a cohort of 10 animals). However, the issue of 

preference of individual culture over the use of cohorts of daphnids in toxicity testing 

has been widely discussed (Sims and van Dijk 1996). According to these researchers 

there is no difference in statistical power between the OECD-recommended procedure 

and testing using individual culture of daphnids. However, biological information 

obtained from individual culture is greater than can be obtained from cohort culture, 

since individual daphnids could not be identified in the cohort. Therefore two types of 

individual culture were investigated: 

• Individual culture of D. carinata in 25 mL of medium with daily feeding and 

daily replacement of medium. 

• Individual culture of D. carinata in 75 mL of medium with daily feeding and 

replacement of medium every alternate day. 

Conditions and end-points were as in Experiment 2. The aim of these experiments 

was to check if both of these conditions satisfy the requirements for long-term toxicity 

testing using daphnia, i.e. not more than 20% mortality and not less than 25 offspring 

per female 14 days of age (OECD, 1996). 

 

Statistics 

Data derived from the experiments (algal growth rate, body length of females, time to 

the first brood, number of offspring per female) were analysed in paired comparisons 
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using analysis of variance. The mean value of intrinsic rate of natural increase and its 

error were determined using a jackknife approach as described by Taberner et al. 

(1993). 

 

4.2.3 Results and discussion 

 

Experiment 1. Growth rates of algae in two culture media  

The highest growth rate was recorded for C. pyrenoidosa cultured in Keating medium 

- 0.129 h-1. C. pyrenoidosa also had a higher growth rate in Tamiya medium (0.102 h-

1) than C. vulgaris - 0.068 h-1 (Table 4.2.1). 

 

The higher growth rates obtained in Keating medium are the results of the following 

effect. C. pyrenoidosa stock culture was maintained in Tamiya medium and then 

taken for the experiment and placed in the two different media. Though the cell size 

of C. pyrenoidosa is reported to be 3-6 µm (Bellinger 1992), we observed cells up to 

20 µm in diameter in Tamiya medium. It seemed that cells were not dividing, but 

accumulating biomass. When placed in Keating medium these cells multiplied by 

producing up to 8 new small (3-6 µm) cells at a time. This indicates that cell density is 

not always an accurate measure of growth. We noted that though growth rates of C. 

vulgaris were also higher when cultured in Keating medium than in Tamiya medium, 

the enlarged cells were not observed.  
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Table 4.2.1 Comparison of growth rates (µ, h-1) of C. vulgaris and C. pyrenoidosa 

cultured in different growth media. Mean±SE (n=4). 

C. pyrenoidosa (in 

Keating medium) 

C. pyrenoidosa (in 

Tamiya medium) 

C. vulgaris (in Keating 

medium) 

C. vulgaris (in Tamiya 

medium) 

0.129±0.023a 0.102±0.027a 0.075±0.006b 0.068±0.003b

 

Superscripts a and b indicate significant (p<0.05) differences between values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 94



 Experiment 2. Effect of different diets on daphnid survival and reproduction 

Survival and fecundity was higher for daphnids fed with C. pyrenoidosa, than those 

fed with C. vulgaris or trout pellets (Table 4.2.2, Fig. 4.2.1). In daphnids fed on C. 

pyrenoidosa (cultured in Tamiya medium) total mortality was lower than 20 % as 

recommended by the OECD  (1996), while for those fed with the same algae cultured 

in Keating medium, mortality was only 10 %. After 21 days, survival of daphnids fed 

with C. vulgaris cultured in Keating medium was 35 % with production of very few 

offspring. There was 100 % mortality in those fed with C. vulgaris grown in Tamiya 

medium by the 13th day of the experiment, and they failed to reproduce. This could be 

a result of the antibiotic chlorellin, produced by C. vulgaris (Pratt and Fong 1940, 

Pratt et al. 1945). This antibiotic is reported to adversely affect the feeding rate of 

daphnids (Ryther 1954). As we can see from Fig. 4.2.1, feeding on C. vulgaris affects 

to a greater degree the juvenile stages of daphnids, compared to animals fed with C. 

pyrenoidosa, reducing their survival. The feeding trial with trout pellets produced 

some offspring, but all daphnids had died by the 18th day of the experiment. This 

confirms the work of previous researchers who have recommended that daphnids be 

fed with live algae rather than solely on trout pellets (Cowgill 1989, Sergy 1990), 

because trout pellets lack essential nutrients. 

 

Tong et al. (1996) suggest that instead of the intrinsic rate of natural increase (r) 

calculated over a 21-day experiment, one can use 14-day values. They argue that the 

first three broods mostly contribute to this value. However, in our experiments, 14-

day and 21-day values differ in some cases (C. vilgaris in Keating medium and trout 

pellets suspension, Table 4.2.2), and this leads to underestimation of r-values in 14-

day computations. These errors can lead to crucial mistakes in modelling. 
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Table 4.2.2 Comparison of end points of individual culture of D. carinata fed 

with different types of food. Mean±SE (n=20). 
Food provided Endpoint 

C. pyrenoidosa 

(in Tamiya 

medium) 

C. pyrenoidosa 

(in Keating 

medium) 

C. vulgaris (in 

Tamiya 

medium) 

C. vulgaris (in 

Keating 

medium) 

Trout pellets 

suspension 

Time to the 1st 

brood (days) 

8.1±0.2a 6.6±0.2b -- 11.7±1.6c 11.5±1.1c

Total number of 

offspring per 

female 

69±4a 42±4b _ 7±1c 5±1c

Intrinsic rate of 

natural increase 

after 21 days 

(day-1) 

0.279±0.012a 0.287±0.012a NA 0.047±0.025b 0.024±0.038b

Intrinsic rate of 

natural increase 

after 14 days 

(day-1) 

0.260±0.013a 0.274±0.013a NA -0.045±0.042b -0.001±0.055b

 

Superscripts a, b and c indicate significant (p<0.05) differences between values for 

each endpoint on any given row. 
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Figure 4.2.1 Survival of D. carinata fed with different types of food (experiment 

2).  
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The time to the first brood is supposed to be the most significant contributing factor in 

r-value, however, it is not the only one determining it. Though the time to the first 

brood is significantly different for C. pyrenoidosa cases (columns 2 and 3 of Table 

4.2.2), their r-values for both 14 and 21 days are not. Significantly different total 

number of offspring per female nullified the differences in the time to the first brood. 

As we showed, the length of the test is also important for r-value. When the length is 

increased from 14 to 21 days, this changes the r-value markedly in some cases - from 

negative (meaning that population is eliminated) to positive (indicating some growth) 

(Table 4.2.2, two last columns). 

 

Though the r-value is highest with C. pyrenoidosa (Keating)-fed animals, the mean 

number of offspring produced per female was highest with C. pyrenoidosa (Tamiya)-

fed animals (69 compared to 42 in the case of those fed C. pyrenoidosa (Keating)). It 

should be noted that the number of offspring was chosen as an endpoint (not the 

biomass produced by a female), because a certain number of offspring over 14 days is 

a requirement for long-term toxicity testing (OECD, 1996). Based on these results C. 

pyrenoidosa cultured in Tamiya medium was used as the food for daphnids in later 

experiments. In addition the recommended pH of the culture medium for C. 

pyrenoidosa is 5.0, therefore Tamiya medium is the preferred medium for culturing C. 

pyrenoidosa (Myers 1947). 

 

Experiment 3. Effects of culture volume on daphnid survival and reproduction  

Standard 21-day observations showed that there were no significant (P>0.05) 

differences between all calculated values (Table 4.2.3) for both experimental 

procedures. 
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However in the 75-mL beakers mortality was higher (10%), than in the 25-mL vials 

(0%). Our observation showed that the antennae of daphnids in beakers were clogged 

with algae, when they died. The test vessels could not be aerated (daphnids do not 

tolerate vigorous agitation), and algae settled on the bottom (after 24 h algal 

concentrations reduced from 2×105 to 2×104 cells/mL). On the days when the media 

were not replaced, new algae had to be mixed with those that settled. This could cause 

overfeeding (despite attempts to minimise this) and consequent clogging of daphnids’ 

antennae, leading to reduction of the feeding rate. 

 

Though 25 mL per female is less than the volume of medium recommended by OECD 

(1996), with daily replacement of medium it is possible to achieve virtually the same 

(if not better) results than with the conditions recommended by the OECD (1996). 

Moreover 40 mL is recommended for D. magna, which is larger than D. carinata and 

thus would produce more metabolites. It is possible, as demonstrated in this 

experiment, that the volume of medium used for individual culture be reduced. Also 

in toxicity tests with rapidly degrading chemicals it is preferable that the medium be 

replaced every day in order to maintain a constant concentration of the pollutant. In 

addition small vials are easier to handle, and they require less algae, water and 

chemicals, making toxicity testing less expensive. There are, however, some negative 

issues potentially associated with the use of smaller volumes, which should be 

considered when conducting a toxicity test. Changes in the surface-to- volume ratio of 

containers can change the rate of adsorption of chemicals on the walls of a container, 

thus affecting the amount of toxicant in the medium. Replacing the medium every day 
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Table 4.2.3 Comparison of end points for D. carinata cultured in different 

volumes of medium. Mean±SE (n=20). There were no significant 

differences between treatments. 

Volume of medium End points 

25 mL 75 mL 

Time to the 1st brood, days 8.2±0.2 7.8±0.3 

Total number of offspring per female 60±4 56±3 

Body length of females after 21 day, mm 3.72±0.04 3.61±0.07 

Intrinsic rate of natural increase (over 21 days), day-1 0.300±0.007 0.298±0.007 

Intrinsic rate of natural increase (over 14 days), day-1 0.283±0.009 0.282±0.007 
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can help alleviate this problem. Also the absorption rate depends on the chemical, and 

this should be taken into account while conducting a toxicity test. 

 

4.2.4 Conclusions 

 

This study has developed some improved conditions for the culture and maintenance 

of D. carinata for use in toxicity testing. It was shown that C. pyrenoidosa cultured in 

either Tamiya or Keating medium can be used successfully as food for D. carinata, 

while trout pellets are not recommended for prolonged use as the only food for D. 

carinata. The volume of culture medium can be reduced from the 40 mL per female 

recommended by the OECD (1996) to 25 mL per female for D. carinata without 

compromising the quality of daphnid culture (in terms of survival and reproduction), 

in order to conduct toxicity testing. 

 

This paper also demonstrated that individual culture provides a significant number of 

different endpoints that cannot be measured in cohorts. We also recommend that when 

using D. carinata in individual culture, the number of animals be reduced from the 

OECD recommended 40 (4 cohorts of 10 animals) to 20 or 15.  
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CHAPTER 5  

EFFECT OF GLYPHOSATE (TECHNICAL GRADE AND 

ROUNDUP BIACTIVE) AND CHLORPYRIFOS ON 

FRESHWATER ALGAE CHLORELLA PYRENOIDOSA AND 

PSEUDOKIRCHNERIELLA SUBCAPITATA 

 

SUMMARY 

 

A series of 72-h toxicity tests were conducted to determine the effects of two 

formulations of the herbicide glyphosate (technical grade and Roundup Biactive

) and 

the insecticide chlorpyrifos on the growth of two unicellular freshwater algae 

Chlorella pyrenoidosa and Pseudokirchneriella subcapitata. The EC50 values for all 

toxicants for both species of algae were determined. With glyphosate and Roundup 

Biactive
 
the 72-h EC50 values were: C. pyrenoidosa = 788 and 763 mg/L, and P. 

subcapitata = 429 and 397 mg/L, while hormesis was observed when P. subcapitata 

was exposed at concentrations equal to 7% and 4% of the EC50 respectively. No such 

effect was noted for C. pyrenoidosa, although it is possible that this effect may be 

present at very low concentrations, which were not tested in this study. For 

chlorpyrifos the 72-h EC50 was well above environmentally realistic concentrations 

for both algae (3736 for C. pyrenoidosa and 2060 µg/L for P. subcapitata). However 

at concentrations 0.3-5 µg/L (with a maximum at 0.06% of EC50) hormesis was 

observed for both species, where growth rate exceeded that of control by as much as 

20% for C. pyrenoidosa and 40% for P. subcapitata.  P. subcapitata was more 
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sensitive to all toxicants tested, and we recommend it as a test species for pesticides in 

preference to C. pyrenoidosa. 

 

5.1 Introduction 

 

Application of pesticides in agriculture can create potentially hazardous situations in 

the aquatic environment due to run offs and sometimes the method of pesticide 

application (spray drift off or direct water application as in aquatic weed control 

(Hartley and Kidd 1990)). There is a need to study the effects of pesticides on water 

ecosystems because of their increased load in inland waters. Algae are the primary 

producers in the ecosystems. If they are affected by the pesticides, the balance within 

the ecosystem could change  (Hanazato and Kasai 1994, McCormick and Cairns 

1994). Algae respond fast to pollutants, thus providing a convenient early warning 

signal of disturbance and its possible causes (McCormick and Cairns 1994). Most 

ecotoxicological studies of effects of agrochemicals on algae in laboratory-based 

experiments measure various inhibitory effects, such as photosynthesis (Hernando et 

al. 1989), culture growth reduction (Maule and Wright 1984, Peterson et al. 1994; 

Ferrando et al. 1996a), macromolecular synthesis (Nyström and Blanck 1997) or 

accumulation (Ferrando et al. 1996b). Only few studies reported effects other than 

inhibitory without discussing them in detail (Gardner et al. 1997 effects of triclopyr 

and glyphosate on Ankistrodesmus). Wong and Chang (1988) found that at low 

concentrations 2,4-D and six organophosphorus insecticides stimulated 

photosynthesis of Chlamydomonas reinhardtii, and 2,4-D and fenitothion also 

stimulated algal growth and chlorophyll a synthesis. Based on these results, not only 
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adverse effects of pesticides (such as decrease of growth) on algae should be noted, 

but also the effects producing increased growth, as this could lead to algal blooms.  

 

The present study investigated the effects of the herbicide glyphosate and the 

insecticide chlorpyrifos on growth of two unicellular freshwater algae Chlorella 

pyrenoidosa and Pseudokirchneriella subcapitata (formerly Selenastrum 

capricornutum) at a range of concentrations including those reported in aquatic 

systems. 

 

5.2 Materials and methods 

 

5.2.1 Maintenance of algal cultures. 

 

C. pyrenoidosa and P. subcapitata require different conditions for growth in terms of 

media composition and pH. For C. pyrenoidosa Tamiya medium was used (Vasser 

1989), with pH 5.0 as an optimum for this species (Myers 1947). For P. subcapitata 

Keating MS medium was used (Keating 1985) with pH 8.0 as optimum for this 

species. Both cultures were grown axenically on a light table. The algae were cultured 

in conical 500 mL flasks with 400 mL of media in them. The luminosity was 

continuous at 1865±38 lux, measured with a flat collector, temperature was 24±1
°
C, 

and continuous aeration with filtered air was provided. Once a week an aliquot of 10 

mL was transferred to a new medium and subcultured. The rest of the cultures were 

put in the refrigerator to settle overnight. The settled cells were harvested for further 

use. 
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5.2.2 Test chemicals 

5.2.2.1 Glyphosate 

Two types of glyphosate – technical grade with concentration of 551 g/L of active 

ingredient, and Roundup Biactive with glyphosate concentration of 336 g/L were 

obtained from Monsanto (batch # K554 for technical grade glyphosate, and batch # 

728408 for Roundup Biactive). 

 

Glyphosate is a broad spectrum, non-selective systemic post-emergence herbicide. It 

inhibits the activity of 5-enolpyruvyl shikimic acid-3-phosphate (EPSP) synthase, an 

enzyme of the shikimic acid pathway (Duke 1988), affecting aromatic amino acid 

synthesis, and consequently, protein synthesis and growth in plants. It is considered 

non-persistent in the environment, because it is biodegraded by soil and water micro-

organisms (Duke 1988). The minimum half-life observed in the aquatic environments 

was two weeks, while in static natural waters it was 7-10 weeks (Sáenz et al. 1997).  

5.2.2.2 Chlorpyrifos 

Chlorpyrifos Pestanal
®  

(O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl)-phosphorothioate) 

was obtained from Riedel-de-Haën Laborchemikalien GmbH (purity 99.6%). 

 

Chlorpyrifos is a broad-spectrum organophosphorothioate insecticide that is used 

against a variety of insect and arthropod pests in agriculture, industry and residences 

(Barron and Woodburn 1995). Chlorpyrifos is an acetylcholinesterase inhibitor, and 

its toxicity to target species is well documented (see review by Barron and Woodburn 

1995). Its toxicity can vary a million-fold across species depending on species 

differences in behaviour, feeding pattern and pharmacokinetics (Marshall and Roberts 

1978).  
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Chlorpyrifos dissipates in water with a half-life from 16 to 72 days in laboratory 

experiments (hydrolysis) and 30-52 days (photolysis) (Racke 1993). However, in 

natural environments a half-life as short as 0.08-2.4 days in the water column has 

been reported (Racke 1993).  

 

Chlorpyrifos is virtually insoluble in water, so a stock solution of 100 g/L was 

prepared in acetone. A series of successive dilutions in acetone (analytical grade) was 

used for preparation of the experimental concentrations of chlorpyrifos. 

 

5.2.3 Experimental protocol 

 

The algal growth test was performed according to OECD guidelines for testing of 

chemicals (OECD 1996). Three replicates of each treatment concentration and 

control(s) were used in the test. All tests were conducted in 250-mL cotton-plugged 

Erlenmeyer flasks with 100 mL of medium. The physical conditions were as 

described for algal culturing. In order to control any influence of the solvent used to 

dissolve chlorpyrifos, an acetone control was also used in the chlorpyrifos tests with 

the same concentration of acetone as found in the highest treatment. 

 

All concentrations of chemicals were nominal, with concentrations of technical grade 

glyphosate and Roundup Biactive expressed as concentrations of active ingredient. 

 

Cell density was counted at the beginning of experiments and after 72 hours, using a 

haemocytometer. On each occasion four sub samples of 0.01 cm
3
 were taken from 
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each replicate and all algal cells in the grid of the haemocytometer (but not less than 

400) were counted. 

Growth rates of the cultures (µ) were calculated as 

µ=(lnNt – lnN0)/∆t 

where  Nt  is algal cell density at time t, 

 N0  is algal cell density at the beginning of the experiment, 

 ∆t  is time between the observations in days 

 

Some experiments consisted of several series of tests. If the concentration of test 

chemical was too low to have any effect on the growth rate, another set of treatments 

with higher concentrations was used (Figs. 5.4, 5.5, 5.7). If several tests were 

performed, the combined curve of growth rate vs. concentration of the chemical was 

plotted. In this case the growth rate was calculated as proportion of control (Figs. 5.2, 

5.4d, 5.6). Though the same conditions were used for each toxicity test, tests were not 

conducted simultaneously. Water quality parameters were measured at the start and at 

the end of the exposure, and they were the same and within the optimal range for the 

species. No reference toxicants were used in the tests. 

 

5.2.4 Statistical analysis 

 

The 72-h EC50 were determined by Probit analysis (SPSS). Comparison of treatments 

to control was performed pair wise using Student t-test (P=0.05). 
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5.3 Results 

 

5.3.1 Glyphosate 

 

Both technical grade glyphosate and Roundup Biactive had very low toxicity to both 

algae with the EC50 for P. subcapitata lower than for C. pyrenoidosa (Table 5.1). The 

values for EC50 for C. pyrenoidosa were in accordance with those previously reported 

(Anton et al. 1993). P. subcapitata had an increased growth (hormesis) around 20% 

of control at concentrations of 7% (around 30 mg/L) and 4% (16 mg/L) for technical 

grade glyphosate (Fig. 5.1) and Roundup Biactive (Fig. 5.2) respectively.  No 

hormesis was observed for C. pyrenoidosa (Fig. 5.3, 5.4), however, concentrations 

below 30 mg/L of technical grade glyphosate were not tested. 

 

5.3.2 Chlorpyrifos 

 

Chlorpyrifos had a very low toxicity to both species of algae. The EC50 was 3736 

(3100 – 4584) µg/L for C. pyrenoidosa and 2060 (1580 – 2816) µg/L for P. 

subcapitata (Table 5.1). Both species of algae had an increase in growth compared to 

control at concentrations of around 0.06% of 72-h EC50 (Fig. 5.5-5.8). This is around 

1.8 µg/L for C. pyrenoidosa and 1.2 µg/L for P. subcapitata. Hormesis was 

significant in C. pyrenoidosa – around 20% relative to control (Fig. 5.6) and even 

more pronounced in P. subcapitata – over 40% (Fig. 5.8).  

 Acetone at concentrations used in our experiments did not have measurable 

negative or positive effects on the growth of both algae (Fig. 5.5-5.8). 
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Table 5.1 The 72-h EC50 values of three pesticides for two species of algae tested. 

In brackets are 95% confidence intervals. 

Pesticide tested Chlorella pyrenoidosa Pseudokirchneriella subcapitata 

Chlorpyrifos (µg/L) 3736 (3100 – 4584) * 2060 (1580 – 2816) * 

Glyphosate (technical grade) 

(mg/L) 

788 (343 – 2545)  429 (229 – 970) * 

Roundup Biactive (mg/L) 763 (436 – 1587)  397 (203 – 934) * 

(*) indicates hormesis at low concentrations. 
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Figure 5.1 Growth rate of P. subcapitata exposed to different concentrations of 

glyphosate (technical grade). Mean±SE, N=3; * - significantly higher, than control, 

# - significantly lower, than control. 
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Figure 5.2 Growth rate of P. subcapitata exposed to different concentrations of 

glyphosate (as active ingredient in Roundup Biactive). * - significantly higher than 

control, # - significantly lower than control. 
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Figure 5.3 Growth rate of C. pyrenoidosa exposed to different concentrations of 

glyphosate (technical grade). Mean±SE, N=3. 
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Figure 5.4 Growth rate of C. pyrenoidosa exposed to different concentrations of 

glyphosate (as active ingredient in Roundup Biactive). Mean±SE, N=3; 

a – series 1, b – series 2, c – series 3, d – as proportion of control (all series 

combined). X-axis is concentration of Roundup Biactive (mg/L a.i.), Y-axis is growth 

rate (day
-1
) (a-c) and (proportion of control) (d). 
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Figure 5.5 Growth rate of C. pyrenoidosa exposed to different concentrations of 

chlorpyrifos. Mean±SE, N=3; a - series 1, b – series 2, c – series 3, d – series 4. X-

axis is concentration of chlorpyrifos (µg/L), Y-axis is growth rate (day
-1
). 
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Figure 5.6 Growth rate of C. pyrenoidosa exposed to different concentrations of 

chlorpyrifos as proportion of control. All series combined. 
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Figure 5.7 Growth rate of P. subcapitata exposed to different concentrations of 

chlorpyrifos. Mean±SE, N=3; a – series 1, b – series 2, c – series 3, d – series 4. X-

axis is concentration of chlorpyrifos (µg/L), Y-axis is growth rate (day
-1
). 
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Figure 5.8 Growth rate of P. subcapitata exposed to different concentrations of 

chlorpyrifos as proportion of control. All series combined. 

 

 

 

 

 

 

 

 

 



 118 

5.4 Discussion 

 

P. subcapitata was more sensitive to all pesticides tested. All EC50 values for this alga 

were almost half of those for C. pyrenoidosa (Table 5.1). Glyphosate is generally 

considered to be practically non-toxic to algae. Peterson et al. (1994) found that 

among 2 species of green algae, 2 species of diatoms, 5 species of cyanobacteria and 

duckweed only diatoms and one cyanobacterium showed sensitivity to glyphosate. 

Maule and Write (1984) reported EC50 values for culture growth between 68 mg/L 

(Chlorococcum hypnosporum) and 590 mg/L (Chlorella pyrenoidosa). In the present 

study both formulations of glyphosate had a similar toxicity (Table 5.1). The 

surfactant present in the Roundup formulation of glyphosate is generally more toxic 

than the active ingredient to animals (Wan et al. 1989, Servizi et al. 1987). However 

from our results it appears not to have a negative effect on algae – the growth rates for 

both algae were not significantly different (Table 5.1). Sáenz et al. (1997) also found 

that 96-h EC50 of technical grade and glyphosate formulation Ron-do were not 

significantly different for two Scenedesmus species. However, EC50 values reported 

for Selenastrum capricornutum (now P. subcapitata) were as low as 2.6-8 mg/L of 

Roundup and 22-485 mg/L for glyphosate (Giesy et al. 2000). Some researchers 

reported that glyphosate was not toxic to microalgae, and in some cases even 

produced a stimulatory effect (Thomas et al. 1986), though the nature of this effect 

was not understood. Schaffer and Sebetich (2004) found that the primary productivity 

of four algal species assemblage increased by 161-168 % relative to control when 

treated with 0.125-12.5 mg/L of glyphosate. They suggested that this effect was due 

to release of nitrogen and phosphorus through the degradation of glyphosate, 

however, the observed stimulation could not be solely attributed to glyphosate 
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availability (Schaffer and Sebetich 2004). Shikha and Singh (2004) reported a twofold 

increase in Hill activity (photosynthetic electron transport) in Anabaena doliolum 

when exposed to 50-200 mg/L of glyphosate, and an even greater increase in the rate 

of oxygen evolution (2-305 times of that in control).  Our results also demonstrated an 

increased growth in P. subcapitata cultures when exposed to both technical grade 

glyphosate and Roundup Biactive at a concentration of around 5% of the EC50. 

 

Information on the effects of pesticides on the ecology of algae is scarce (Gardner et 

al. 1997). Judging from the data available regarding, for instance, glyphosate toxicity 

to algae (Hess 1980, Christy et al. 1981, Maule and Wright 1984, Sáenz et al. 1997, 

Gardner et al. 1997, Pipe 1992) one can conclude that a great variation exists in EC50 

values for different species of algae, ranging from 2 to 590 mg/L of active ingredient. 

Barron and Woodburn (1995) reported that algal species exhibit large species 

differences in sensitivity to chlorpyrifos (>100 fold). Ma and Liang (2001) tested 12 

herbicides using C. pyrenoidosa and Scenedesmus obliqus and found differences in 

sensitivities of these species, which could vary more than tenfold for some herbicides. 

This means that in the environment when a multiple species algal community is 

affected by a pesticide, the biodiversity of this community can be greatly affected as a 

result of different responses of single species to a particular pesticide, leading to a 

change in a community structure. Butcher et al. (1977) observed a replacement of the 

predominant algal species Mougeotia sp. with Chlorella sp. in artificial pond 

communities exposed to chlorpyrifos. The exposures also resulted in greater algal 

abundance and more persistent algal blooms compared to control ponds. Differences 

in the EC50 of chlorpyrifos for the two algae in our study also add weight to the 

hypothesis that changes in algal community structure can result from exposure to 
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pesticides. This in turn can cause shifts in the consumer communities because of their 

preferences for a particular food type. Zalizniak and Nugegoda (2004) showed that the 

cladoceran Daphnia carinata performed better when fed with C. pyrenoidosa than 

with Chlorella vulgaris. Yet our further studies of daphnid cultures have shown that 

the cladocerans grew better when fed with P. subcapitata than with either Chlorella 

species (personal observations). If P. subcapitata (being a more sensitive species 

compared to C. pyrenoidosa) were negatively affected in a natural ecosystem, D. 

carinata (and possibly other cladocerans species) would also be negatively affected, 

changing the balance in species abundances and community structure. 

 

Our results confirmed that chlorpyrifos had a very low toxicity to both species of 

algae studied, with EC50 values (Table 5.1) much higher than those observed in the 

environment (the highest reported in the literature is 3.7 µg/L (Wood and Stark 

2002)). Approximately the same order EC50 values were reported for freshwater (7.8 

mg/L for C. vulgaris, Nikolenko and Amirkhanov 1993; 5 mg/L for Anabaena sp., 

Lal et al. 1987) and marine algae (1.2 mg/L for Skeletonema costatum, Walsh 1983). 

Concentrations of more than several microgram per litre are very rarely observed in 

the environment and for a short time only. In the present study increased algal culture 

growth was observed at concentrations consistent with that found in the environment 

(Braun and Frank 1980, Holladay et al. 1996). Hormesis was significant in both algae 

at low chlorpyrifos exposure concentrations (Fig. 5.6 and 5.8). The same effect was 

earlier observed by van Donk et al. (1992) in a P-limited medium, where chlorpyrifos 

acted as an additional source of phosphorus. In our study, however, phosphorus was 

not limiting, and the mechanism of this effect is not clear. Birmingham and Colman 

(1977) reported an increase of up to 20% in growth of freshwater algae Anabaena 
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flos-aquae and Clamydomonas reinhardtii exposed to chlorpyrifos, which may have 

been a result of the algae taking up chlorpyrifos. Zalizniak and Nugegoda (2006) 

reported that Daphnia carinata performed better in the presence of P. subcapitata 

than without it. Rose et al. (2002) also found that low food levels caused a significant 

increase in the toxicity of chlorpyrifos to Ceriodaphnia cf. dubia. This suggests that 

there could have been an uptake of chlorpyrifos by algae, reducing the available 

concentration of the insecticide to daphnids. A similar effect was reported by Karen et 

al. (1998) with the freshwater microphyte Elodea densa accumulating chlorpyrifos 

from the water column. In a microcosm study Van den Brink et al. (1995) reported an 

increase in the algal cell numbers in microcosms four weeks after treating with 

chlorpyrifos for a number of species when compared with controls. Though the 

differences were not always statistically significant, 7 species out of 17 showed an 

increase in biomass compared to control. 

 

Hormesis in algal cultures has important environmental implications. With exposures 

to environmentally realistic low concentrations of pesticides (when hormesis usually 

occurs) increased growth can result in algal blooms. In conjunction with the negative 

effects of the same concentrations of pesticide on algal consumers, the structure of an 

ecosystem may be greatly affected. Hanazato and Kasai (1994) studied the effects of 

another organophosphorus insecticide, fenthion, on experimental pond communities 

and reported that fenthion induced an increase in the density of rotifers and 

phytoplankton, while suppressing the cladoceran populations. They concluded that 

this was a secondary effect of the chemical, however, as we have demonstrated in this 

study with chlorpyrifos, exposure to organophosphates can directly result in a 

significant increase in the production of some algal species.  
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5.5 Conclusions 

 

The pesticides glyphosate and chlorpyrifos are generally considered to be non-toxic to 

microalgae, at least at environmentally realistic concentrations. However, our study 

showed an increased growth in algal cultures exposed to low concentrations of these 

agrochemicals. This indicates the potential for algal blooms, if and when low 

concentrations of these pesticides reach the aquatic environment. We suggest that 

hormesis should be taken into account when considering the effects of low 

concentrations of agrochemicals. More research is required in this area, as previous 

studies have mainly examined toxic effects of pesticides at higher concentrations, 

disregarding such effects as hormesis, which can lead to significant environmental 

consequences.  

 



CHAPTER 6  

EFFECT OF CHLORPYRIFOS ON THREE SUCCESSIVE 

GENERATIONS OF DAPHNIA CARINATA 

Published as: 

Effect of sublethal concentrations of chlorpyrifos on three successive generations of 

Daphnia carinata. 

L. Zalizniak and D. Nugegoda 

Ecotoxicology and Environmental Safety (2006), 64(2): 207-214. 

 
 

SUMMARY 

 

Effects of sublethal concentrations of chlorpyrifos (ranging from 0.005 µg/L (‘0.01 LC50’) 

to 0.500 µg/L (‘1 LC50’)) on population characteristics of individual cultures of Daphnia 

carinata were investigated over 21 days with subsequent testing of the two next 

generations. The endpoints for the first and second generations observed were: survival, 

fecundity, time to first brood, size of the females after 21-day exposure and number of 

offspring per female. The results were incorporated into the computation of the intrinsic 

rate of natural increase for daphnids in each of the treatments. Exposure to chlorpyrifos 

affected survival and fecundity of animals in the first generation. In the second generation 

the most affected endpoint was time to the first brood with an indication of hormesis. Acute 

LC50 tests were then conducted using animals of the third generation from each of the 

exposures in individual tests. Despite the absence of a negative effect of chlorpyrifos in the 

second generation, results of testing the third generation showed constant significant 

decline in LC50 values from control daphnids through to ‘0.1 LC50’ pre-exposed daphnids 
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(‘0.1 LC50’, or 0.05 µg/L being the highest concentration in which animals survived 

exposure to the toxicant in the second generation). 

 

 
6.1 Introduction 

 

The water flea Daphnia (Cladocera) is one of the most abundant zooplankton taxa in 

Australia and, indeed, in the whole Southeastern Asian region (Benzie 1988). Daphnia 

carinata is a native Australian species, which is widespread throughout the continent. 

Being a primary consumer and, in turn, a food source for secondary consumers (i.e. 

predators) this species plays an important role in aquatic food webs. Weakening this 

trophic link can threaten the stability of a freshwater ecosystem as a whole, leading to algal 

blooms and reduction in the populations of the predator species. 

 
The agricultural use of insecticides may result in the contamination of the aquatic 

environment, in which arthropods are the most vulnerable non-target species. The 

insecticides affect crustaceans, since they are closely related to insects, in the same way as 

the target species. 

 

Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate) (CPF) is a non-

systemic insecticide with contact, stomach and respiratory action and is a cholinesterase 

inhibitor. Organophosphorus insecticides replaced organochlorines, and are today widely 

used on a variety of crops to control a great number of insect pests in soil, foliage and 

stored products. It is also used to eliminate mosquitoes (adults and larvae). According to 

data presented in Barron and Woodburn (1995) and Wijgaarden et al. (1993) 

representatives of crustaceans, insects and fish can be considered particularly sensitive to 
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CPF. Direct application to water (as in case of elimination of mosquitoes) and indirect 

entry (as agricultural runoff) can cause concentrations of CPF in water bodies as high as 

3.7 µg/L (Wood and Stark 2002), leaving it for 10 days afterwards at concentrations above 

0.5 µg/L. This lower concentration corresponds to the 48-h LC50 for D. carinata (our data), 

which is similar to reported values for D. longispina – 0.8 µg/L (Van Wijngaarden et al. 

1993).  For other cladoceran species even lower LC50 has been reported - 0.25 µg/L for D. 

pulex (Van der Hoeven and Gerritsen 1997). Generally, 48-h LC50 for daphnids is reported 

to be 0.1-0.5 µg/L (Barron and Woodburn 1995).  However, not many studies are 

conducted on the chronic (long term) toxicity of CPF to cladoceran species. Some 

researchers state that CPF “does not result in significant sub-lethal responses” (eg Naddy et 

al. 2000). However, according to Pesticide Action Network (PAN), toxic effects of CPF to 

zooplankton include accumulation, behaviour and development problems, effect on cells, 

enzyme, feeding behaviour, growth and reproduction (www.pesticideinfo.org, see 

references therein).  

Our aims were to investigate the sublethal effects of CPF on D. carinata over multi 

generational exposure and to determine if they changed with time.  

 

6.2 Materials and methods 

 

6.2.1 Preparation of media. 

 

For experiments and maintenance of D. carinata culture M4 medium (Elendt and Bias 

1990) was used with slight modifications. Instead of the vitamins listed in the original 

recipe we used the commercially available Reptivite™ (ZOO MED, San Luis, OBISPO, 

CA 93401), prepared as follows: 1 g of Reptivite powder was dissolved in 100 mL of 
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MilliQ water, then filtered using 20 µm sterile filter, made up to 100 mL with MilliQ water 

and kept in a refrigerator. One mL of this vitamin solution was added to 5 L of medium. 

Water quality parameters of this medium are: total hardness – 2.5 mmol/L, alkalinity – 0.9 

mmol/L, conductivity – 610 µS/cm, pH – 8.2±0.2. The medium was aerated for at least 24 

hours before use. 

 

6.2.2 Feeding. 

 

Freshwater green unicellular algae Pseudokirchneriella subcapitata (formerly Selenastrum 

capricornutum) was used as food for daphnids. Algae were cultured in 0.5 L conical flasks 

with 0.4 L Keating algal medium (Keating 1985) on a light table (continuous luminosity 

2800±100 lux, temperature 23±1oC), and continuous aeration with filtered air was 

provided. Once a week the culture was harvested and put in the refrigerator for 2 days to 

settle. Supernatant was discarded and the algal suspension was added during cladoceran 

medium replacement to achieve 3.5×105 cells/mL in the culture medium. 

 

6.2.3 Maintenance of daphnid culture. 

 

Several females of D. carinata were obtained from the Arthur Rylah Institute, Department 

of Natural Resources and Environment, Heidelberg, Victoria, Australia. The stock culture 

was kept in 2-L glass jars with M4 medium. Half the medium was replaced twice a week. 

When preparing the experiment, 50 adult females with broods were placed in 40-mL glass 

vials with M4 medium (2 in each vial). Medium was replaced every second day; offspring 

were removed daily. The neonates from the first two days were discarded, because there 
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could be males in these broods. Offspring starting from the third day were used in the 

experiments.1

 

6.2.4 Preparation and analysis of chemical solution. 

 

Chlorpyrifos Pestanal® (99.6% purity) was obtained from Riedel-de-Haën 

Laborchemikalien GmbH. CPF is virtually insoluble in water, so a stock solution in acetone 

was prepared with a concentration of 100 g/L. A series of successive dilutions in acetone 

(analytical grade) was used for preparation of the experimental concentrations of CPF. 

Because of the very low nominal concentrations of CPF used in the study and small volume 

of test solutions, routine analysis of CPF could not be made. However, the analysis of the 

highest concentration tested (0.5 µg/L) was performed by the Australian Government 

Analytical Laboratories (AGAL). Methods are based on USEPA 3510C (for sample prep) 

and detection is based on USEPA8141 (OP pesticides). An aliquot of water was extracted 

using dichloromethane. The combined extract was filtered through sodium sulphate then 

concentrated. Extracts were then exchanged into hexane.  If required, the extract was 

cleaned up by Gel Permeation Chromatography (GPC) and/or sulfur removal.  The final 

extract was analysed by GC-ECD and GC-NPD. Extraction was made 48 hours after 

solution preparation. For the nominal concentration of 0.5 µg/L the measured concentration 

was 0.44 µg/L with the recovery of 97%. 

 

 

                                                
1 When the adult females are taken for breeding in the individual culture, it is not known what 

conditions they were grown before. If they already contained eggs, those eggs can hatch into 
males or females depending on prior conditions. Breeding in the individual culture usually 
produces females, if all conditions are optimal for a breeding female. To ensure that all offspring 
are females, breeding females are allowed to breed in the individual culture for some time (2-3 
broods), hence only the third brood is taken for exposure. 
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6.2.5 Experimental protocol. 

 

Animals (< 24 hours old) were pooled to reduce the risk of choosing a particularly sensitive 

(or tolerant) clone for the experiment (see Zalizniak and Nugegoda 2004). 

 

A 48-h acute static toxicity test was performed to determine the LC50 for CPF according to 

OECD guidelines (OECD 1996). Three replicates of 10 animals in 100 mL of medium 

were used for each of the concentrations and control. Concentrations tested were in the 

range of 0.2 – 3 µg/L (nominal concentrations). An acetone control with the same 

concentration of acetone as for the highest treatment was also prepared (100 µL/L). Death 

of an animal was confirmed only after microscopical examination of its heartbeat. The 48-h 

LC50 for CPF for D. carinata was 0.512±0.062 µg/L. Based on this value the following 

concentrations of CPF were used for investigating the long-term toxicity to D. carinata: 

0.005, 0.025, 0.05, 0.25 and 0.5 µg/L (‘0.01 LC50’, ‘0.05 LC50’, ‘0.1 LC50’, ‘0.5 LC50’ and 

‘1 LC50’ respectively). The variable factor in dilution series for CPF concentrations was 

used to cover a broader concentration range. The concentrations of CPF are expressed in 

terms of proportion of the LC50 value because LC50 values for a particular species vary 

depending on the conditions, testing laboratories etc. We suggest that expression of 

concentration this way is more useful for comparison across different studies. 

 

The experiment consisted of three parts: 

 

1. Long-term (21 days) toxicity of CPF to individual culture of D. carinata.  

 

                                                                                                                                               
 

 128



Individual culture of D. carinata was chosen as an alternative to the OECD (1996) 

approved procedure for ecotoxicological experiments. In chronic toxicity testing, according 

to OECD guidelines, the volume of media per female should not be less than 40 ml (for D. 

magna), and medium replacement every other day is recommended (this is for a cohort of 

10 animals). However there is no difference in statistical power between the OECD 

recommended procedure (4 cohorts of 10 animals) and individual culture (10 animals) 

testing (Sims and van Dijk 1995). However, individual culture is more informative, 

especially in terms of attributing offspring to a particular animal. The number of contacts in 

a cohort can also influence test results, especially when numbers of individuals in cohorts 

are unequal due to mortality. There is also a question whether to reduce the volume of test 

media per cohort, if mortality occurs. If not - the dose of chemical per animal can be 

potentially greater, if yes - there are discrepancies between replicates. These issues do not 

arise when individual culture is used, see also Zalizniak and Nugegoda (2004). 

 

Fifteen juveniles <24 h old were placed individually in 25-mL McArtney bottles with M4 

medium. Animals were fed daily with green algae P. subcapitata so that the concentration 

of algae was 3.5×105 cells/mL in the exposure solutions. The cladoceran were transferred 

daily to fresh media, offspring were removed and counted. The measured endpoints were: 

survival, number of offspring per female, time to the first brood, and size of the females 

after 21-day exposure (measured under dissecting microscope with an eye-piece 

micrometer, precision 0.05 mm). We did not use total biomass produced per female as an 

endpoint, because it was not feasible in this experiment. Survival and fecundity data were 

used to compute an intrinsic rate of natural increase (r) as determined by Lotka (1913): 

 

Σ  lxmxe-rx=1, 
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where lx is the proportion of individuals surviving to age x, 

mx is the age specific fecundity (number of females produced per 

surviving female at age x), 

x is days. 

 

2. Long-term (21 days) toxicity of CPF to the second generation of D. carinata.  

 

When the animals in the parent generation started to reproduce, 15 offspring were taken 

from each treatment concentration and both controls, and placed in the corresponding 

concentrations of CPF. There was no concentration of 0.5 µg/L (‘1 LC50’), because all the 

animals in the parent generation died at this concentration before they started to reproduce. 

Offspring were usually taken on the third day from the onset of reproduction. On the first 

two days there were not enough animals to start the second-generation test, because just 

one or two females were reproducing at some treatment concentrations. The same 

experimental protocol and endpoints were used for the second-generation test as for the 

parent-generation. 

 

3. Post-experiment 48-h LC50 tests to determine the change in sensitivity to CPF in the 

third generation of daphnids. 

 

When the second generation of D. carinata produced enough offspring, a 48-h LC50 test  

(static) was conducted for each treatment and controls. We required not less than 120 

animals from each exposure concentrations to conduct this test, and usually this high 

number was only obtained on the 5th or 6th day from the onset of reproduction. There was 
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no LC50 test for the concentration of 0.25 µg/L (‘0.5LC50’), because there were not enough 

offspring to conduct the test.  This test was conducted according to OECD guideline for the 

testing of chemicals (OECD 1996). There was a variation from the first 48-h LC50 test. 

There were 4 replicates of 5 animals for each tested concentration and controls (versus 

3×10 in the original test). We had enough animals only to conduct this variation of test. 

However this is allowed by the guidelines, and both versions are acceptable. 

Concentrations from 0.1 to 0.8 µg/L were used. The volume of a replicate was 25 mL. The 

48-h LC50 values were determined separately for each group of third generation daphnids 

from parents pre-exposed to CPF (‘0.01 LC50’, ‘0.05 LC50’ and ‘0.1LC50’) and plotted 

against these concentrations.  

 

6.2.6 Statistics 

 

Data derived from the experiments (body length of females, time to the first brood, number 

of offspring per female) were analysed using analysis of variance (SPSS). The LC50 values 

were determined using PROBIT analysis (SPSS). Because there were no significant 

differences between control and acetone control, except in the survival of the parent 

generation, the controls were combined for analysis of all other parameters and all 

treatments were compared to this “combined” control. A one-way ANOVA followed by 

Dunnet multiple comparisons was performed, but the results were inconclusive. However 

when each treatment was compared pair wise to control using Student t-test for unequal 

variances the differences were evident at P=0.05. The mean value of intrinsic rate of 

natural increase and its standard error were determined using a jackknife approach as 

described by Taberner et al. (1993). Standard error was used throughout the results. 
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6.3 Results 

 

The results for the parent generation of D. carinata are presented in Fig. 6.1 and Fig. 6.2.  

All daphnids at CPF concentrations of ‘0.5LC50’ died by day 13 of the exposure, and at ‘1 

LC50’– by day 7, before the onset of reproduction. The survival at day 21 in all of the 

treatments including the acetone control was lower than in control, mostly affecting older 

animals (Fig. 6.1). Cumulative survival at the end of the 21-day exposure was between 73 

and 80 % for all surviving treatments. There were significant differences between 

combined control and surviving treatments for the number of offspring per female (Fig. 

6.2a) and size of animals at the end of exposure for concentration ‘0.05LC50’ (Fig. 6.2b). 

All treatments showed lower fecundity and size values than combined control. It appears 

that low concentrations of CPF (up to 10% of LC50) adversely affect individual 

characteristics of D. carinata in the parent generation. The intrinsic rate of natural increase 

(r) was also adversely affected at three out of four concentrations tested. 

 

A slightly different picture emerges for the second-generation toxicity test. Though the 

survival patterns seemed similar to the parent generation test, there were some differences 

(Fig. 6.3). The survival curve for the concentration of ‘0.5LC50’ for the parent generation 

yielded a distinctive sigmoid shape, while for the second generation it was practically 

linear. However maximum longevity was similar in both generations (13 and 12 days). 

There is a marginal increase in survival for concentrations ‘0.01LC50’ and ‘0.05LC50’ 

compared to the control value of 80% and then a drop to 60% survival at a concentration of 

‘0.1LC50’ (Fig. 6.4d). The survival at this concentration is the lowest, however the number 

of offspring per female was  
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Figure 6.1 Survival of the parent generation of D. carinata at different nominal 

concentrations of CPF. 
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Figure 6.2 Population and individual characteristics of individual culture of D. 

carinata  (parent generation) exposed to different nominal concentrations of 

chlorpyrifos for 21 days. Mean±SE, N=15; 

a – Number of offspring per female 

b – Body size of females after 21-day exposure 

c – Time to the first brood 

d – Cumulative survival of animals after 21-day exposure 

e – Intrinsic rate of natural increase 

An asterisk indicates values significantly different from combined control. 
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Figure 6.3 Survival of the second generation of D. carinata at different nominal 

concentrations of CPF. 
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Figure 6.4 Population and individual characteristics of individual culture of D. 

carinata (second generation) exposed to different nominal concentrations of 

chlorpyrifos for 21 days, following exposure of the parent generation. Mean±SE, 

N=15; 

a – Number of offspring per female 

b – Body size of females after 21-day exposure 

c – Time to the first brood 

d – Cumulative survival of animals after 21-day exposure 

e – Intrinsic rate of natural increase 

An asterisk indicates values significantly different from combined control. 
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statistically significantly higher at this concentration (79±7 compared to 62±5 for 

combined control, Fig. 6.4a), and time to the first brood was shorter (8.7±0.2 

compared to 9.1±0.2 for combined control, Fig. 6.4c), indicating improved 

performance. Combination of these parameters resulted in a slightly greater (though 

not significantly different) intrinsic rate of natural increase for concentration 

‘0.1LC50’ (0.274±0.007 day-1 against 0.270±0.005 day-1 for combined control). At the 

same time animals at the concentration of ‘0.01LC50’ had almost all their 

characteristics (except survival) lower than in control (Fig. 6.4). This resulted in a 

significantly (10%) lower intrinsic rate of natural increase for this concentration  

(0.240±0.008 day-1).  

 

To determine if there was a change in sensitivity to CPF after exposure of two 

generations of daphnids to this insecticide, the offspring of the second generation 

were collected and tested. The 48-hour LC50 values were determined for each 

exposure concentration, and are shown in Fig. 6.5. There were no significant changes 

in sensitivity for the exposure concentration of ‘0.01LC50’ and both controls. Their 

48-h LC50 values were not significantly different from the initial value of 0.512±0.062 

µg/L (Fig. 6.5). However, the sensitivity was significantly greater for the CPF 

exposure concentrations of ‘0.05LC50’ and ‘0.1 LC50’. The 48-h LC50 values for these 

exposure concentrations were 0.235±0.032 and 0.280±0.046 µg/L respectively (Fig. 

6.5). 
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 Figure 6.5 The 48-h LC50 values for the third generation of D. carinata taken 

from different nominal second-generation exposure concentrations of 

chlorpyrifos. Mean±SE, N=4.  
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6.4 Discussion 

 

The results of the toxicity testing for the first generation showed that at a long-term 

exposure to CPF concentration of 0.5 µg/L (48-h LC50), the survival is greater than in 

the acute toxicity testing. The LT50 (time from the start of the experiment at which 

50% of test animals die in a given concentration of a toxicant) for this concentration 

was 48 hours for acute exposure; in chronic exposure at the same concentration the 

LT50 was 5.5 days. The acute toxicity testing was conducted without feeding the 

animals. Probably the presence of algae in the chronic exposure reduces the amount of 

CPF available for daphnids through the water route of exposure. There is no 

agreement between researchers on this issue. Naddy and Klaine (2001) reported that 

the presence of food increased the toxicity of CPF to D. magna in a pulse-exposure 

experiment. Acute toxicity testing at the same laboratory yielded similar results 

(Baladi 1998, cited in Naddy and Klaine 2001). However Rose et al. (2002) in their 

study with different food concentrations found that limited food significantly 

increased the toxicity of CPF to daphnids. Kooijman and Metz (1984) indicated that 

the toxicity of chemicals, which directly affect survival, such as CPF, is aggravated by 

food limitation. Our results support the findings of Rose et al. (2002) and Kooijman 

and Metz (1984). The possible explanation for this effect is, that algae metabolise 

CPF as a source of phosphorus, reducing its content in the solution. Van Donk et al. 

(1992) observed a growth stimulating effect on Selenastrum capricornutum (now P. 

subcapitata) treated with Dursban®. A similar effect was reported with the culture of 

other green alga, Chlamydomonas reinhardtii treated with CPF  (Birminghan and 

Colman, 1976). Butcher et al. (1977) stated that the occurrence of algal blooms after 

applications of CPF may be due to an increase in phosphorus, as a result of 
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degradation of the compound. The stimulating effect was observed only for green 

algae. 

 

As was expected, the survival was clearly affected in the parent generation of 

Daphnia. CPF, being a cholinesterase inhibitor, leads to a paralysis of animals and 

their consequent death. At a CPF concentration of ‘1LC50’ all animals died before 

they started to reproduce (Fig. 6.1). Though the animals at a CPF concentration of 

‘0.5 LC50’ produced enough offspring for the second-generation exposure, all animals 

at this concentration in the parent generation died by the 13th day (Fig. 6.1). Second-

generation animals at a CPF concentration of ‘0.5 LC50’ did not produce any 

offspring. Their survival curve (Fig. 6.3) was different to that of the parent generation 

(Fig. 6.1). This indicates, that exposure of parents to this concentration of CPF affects 

the response of the second generation, making younger animals more susceptible to 

the toxicant at this concentration. It indicates that the animals in the second generation 

were affected by CPF from their early life stages, contrary to the parent generation, 

where the effect of CPF on survival was not evident till the animals reached maturity 

(Fig. 6.1). In all other concentrations, exposure of the parent generation did not show 

a significant difference in terms of the survival of animals (Fig. 6.1). It should be 

noted, that animals for the second-generation test were not taken from the third brood 

(as per OECD 1996), but on the third day of reproduction (which could have been 

either the first or second brood). Contrary to the guidelines recommendations (OECD 

1996) requiring that the first two broods be discarded, and only the third one used for 

the toxicity testing, Klein (2000) found no differences between broods including the 

first when conducting acute toxicity testing with potassium dichromate. Considering 
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this, and in order to minimise the test duration, the second-generation test was begun 

when we had enough offspring to start all treatments simultaneously.  

 

Cumulative survival (after 21-d exposure) in the second generation was similar to 

their parent’s, except at concentration of ‘0.1 LC50’, in which only 60% of animals 

survived compared to 80% in the parental generation (Fig. 6.3). This indicates that 

continuous exposure to low (0.05 µg/L) concentrations of CPF greatly reduces the 

survival of animals in the second generation. A further study on changes in sensitivity 

to CPF (a 48-h acute toxicity test with the third generation of daphnia), showed, that 

even exposure concentrations as low as ‘0.05 LC50’ or 0.025 µg/L greatly affects the 

acute sensitivity of animals. The LC50 value for animals taken from this exposure 

concentration for acute testing was less than half the LC50 for control animals (Fig. 

6.5). 

 

Among other endpoints for the parent generation of daphnids (Fig. 6.2), only ‘number 

of offspring per female’ was significantly reduced in all treatments compared to 

control (Fig. 6.2a). All other endpoints proved insensitive to the effect of CPF, at least 

in the sense that no clear concentration-response relationships were observed. 

Fernandez-Casalderrey et al. (1995) obtained a similar result for another 

organophosphate insecticide methylparathion. 

 

An indication of hormesis can be noted in the second generation (Fig. 6.4). A 

significant increase in the number of offspring per female at ‘0.1 LC50’ compared to 

control, combined with reduction in time to the first brood indicated that animals 

experienced a stimulating effect of CPF (Fig. 6.4a, c). Though a hormesis effect has 
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been known for a long time and reported for a number of toxicants (Stebbing 1982 

and references therein, Hadjinicolaou and LaRoche 1988, Stevenson et al. 1995) 

especially heavy metals (Bodar et al. 1990, Calabrese and Baldwin 1993, 1997), there 

are just a few reports on hormesis for organophosphates and cladocerans (Stark and 

Vargas 2003). The mechanism of this effect in our case is unknown and requires 

further investigation. Probably, a prolonged exposure to CPF promotes Daphnia’s r-

strategy (an increased fecundity combined with a low survival rate). A hormesis effect 

should not be considered beneficial in this case, especially since the third-generation 

test showed an increased sensitivity of daphnids to CPF. Rose et al. (2004) observed 

an increased tolerance of C. dubia to sublethal concentrations of 3,4-dichloraniline, 

when exposed for four generations (the end point observed was a number of 

offspring). They attribute this increase to physiological acclimation of C. dubia to this 

toxicant. However the number of offspring alone cannot be considered enough to 

make conclusions about sensitivity to a particular toxicant. Other endpoints should 

also be analysed, since as evidenced by our results different endpoints prove valuable 

in analysing effects of toxicants on multiple generation. 

 

The lowest concentration tested in our study, i.e. ‘0.01 LC50’ (0.005 µg/L), yielded the 

lowest number of offspring per female in the second generation (though not 

significantly different from control) and significantly increased time to the first brood, 

which in combination produced the lowest r-value. This indicates, that even very low 

(and environmentally realistic) concentrations of CPF can affect populations of 

cladocerans. Some countries (for instance Canada) have water quality guidelines for 

the protection of freshwater aquatic life of CPF below this concentration i.e. 0.0035 

µg/L (www.pesticideinfo.org). However, the US National Water Quality Criteria 
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recommend as freshwater quality criteria continuous exposure to 0.04 µg/L 

(www.pesticideinfo.org), which is ten times the concentration producing a negative 

effect in our study. 

 

The intrinsic rate of natural increase (r) proved to be an insensitive parameter in our 

study. It combines fecundity, time to maturation and survival, and any of these 

parameters can affect its value. In this study low survival at a given concentration 

neutralized the hormesis effect of fecundity and maturation time. Investigating the 

effects of cadmium and copper on D. pulex Meyer et al. (1987) concluded that r-value 

was not adequate to fully determine changes in population dynamics. Our results 

support their conclusion. In order to understand mechanisms and effects of toxicants 

on a separate organism, observation of all population parameters is recommended. 

However when modelling an effect on a population and their recovery after exposure 

to toxicant, the intrinsic rate of natural increase alone could be appropriate. 

 

6.5 Conclusions 

 

CPF affects not only survival of D. carinata, but also their reproduction, including 

number of offspring per female and time to the first brood. While in the parent-

generation exposure to low concentrations of CPF negatively affected reproduction, in 

the second-generation exposure, a hormesis effect was observed for all reproductive 

parameters investigated. From the results of our study we recommend that the 

intrinsic rate of natural increase be used only for population studies. If the 

mechanisms and effects of a toxicant are to be analysed, all reproductive parameters 

should be considered, since if even one is affected, a toxicant concentration cannot be 
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considered ‘safe’. Our study demonstrated a negative effect of CPF on reproduction 

of D. carinata during prolonged exposure to 0.005 µg/L, therefore even such a low 

concentration cannot be considered safe.  
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CHAPTER 7 

EFFECT OF GLYPHOSATE AND ROUNDUP BIACTIVE ON 

DAPHNIA CARINATA IN MULTIPLE GENERATION TESTS 

 

When the first experiments of the project using D. carinata were conducted, the sea salt 

medium (SSM) was used (Barry 1999). It consisted of deionised water with 0.4 g/L of sea 

salt (Coralife, scientific grade, Energy Savers Unlimited, Inc, Carson, CA, USA) and 0.1 

g/L of CaCl2  (pH=6.9±0.1, EC=900 µS/cm). It was noted while conducting experiments 

and maintaining culture that control animals quite often would not reproduce, or their 

fecundity was low.  Therefore an alternative medium was sought and for further 

experiments M4 medium was adopted (Elendt and Bias 1990). However, when hormesis 

was observed in a number of experiments with daphnids in M4 medium as well, it was 

decided to compare these results with the earlier experiments in SSM.  
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7.1 COMPARISON OF TOXICITY RESULTS IN TWO DIFFERENT 

MEDIA 

Submitted as: 

Effects of two formulations of a herbicide glyphosate on Daphnia carinata in 

multiple-generation toxicity tests.  

L. Zalizniak and D. Nugegoda 

Submitted to Environmental Toxicology and Chemistry, July 2006 

 

SUMMARY 

 

The long-term toxicity of glyphosate (technical grade and formulation Roundup Biactive) 

to three successive generations of Daphnia carinata was investigated. Survival, 

fecundity, time to the first brood, size of animals and the intrinsic rate of natural increase 

were measured as sublethal endpoints for two generations, each in a 21-d exposure. The 

third generation was subjected to a 48-h acute toxicity test to evaluate their sensitivity to 

glyphosate-based compounds. Glyphosate was tested in two different media: sea salt 

solution and M4 medium specially designed for daphnids, while Roundup Biactive was 

tested in M4 medium. Results indicated that glyphosate and Roundup Biactive had 

relatively low toxicity to D. carinata. Hormesis was evident in sea salt medium exposures 

in the first and second generations of daphnids with technical grade glyphosate. When 

exposed to glyphosate and Roundup Biactive in M4 medium animals showed no 

indication of hormesis. We hypothesize that glyphosate may have compensated for the 

lack of microelements in the sea salt medium, and possible mechanisms are discussed. 
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7.1.1 Introduction 

 

Since their discovery in the 1970s, glyphosate-based products have been the most widely 

used herbicides for control of a broad range of weeds (Hartley and Kidd 1990). They are 

extensively used in orchards, vineyards, conifer plantations, and many plantation crops 

throughout the world. 

 

Glyphosate is a broad spectrum, non-selective systemic post-emergence herbicide. It 

inhibits the activity of 5-enolpyruvyl shikimic acid-3-phosphate (EPSP) synthase, an 

enzyme of the shikimic acid pathway (Duke 1988), affecting aromatic amino acid 

synthesis, and consequently, protein synthesis and growth in plants. It is considered non-

persistent in the environment, because it is biodegraded by soil and water micro-

organisms (Duke 1988). The minimum half-life observed in the aquatic environments 

was two weeks, while in static natural waters it was 7-10 weeks (Sáenz et al. 1997).  

 

Roundup Biactive is a formulation of glyphosate (41 % as isopropylamine salt) and 

surfactant (10-20 %) with the same mode of action as glyphosate. This formulation was 

designed after Roundup ® (earlier formulation of glyphosate) was found to be quite toxic 

to aquatic organisms. Wan et al. (1989) found 96-h LC50 for four fish species to be 11-33 

mg/L of Roundup ®. Mann and Bidwell (1999) determined 48-h LC50 for several species 

of tadpoles for Roundup ® (containing MON 2139 surfactant) and Roundup Biactive ® 

(surfactant MON 77920). In acid equivalent (a.e.) the toxicity was 2.9-11.6 mg/L 

(depending on the species) for Roundup ®, and 328-494 mg/L for Roundup Biactive ® - 
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two orders of magnitude less than Roundup ® (Mann and Bidwell 1999). Manufacture 

Monsanto claims that Roundup Biactive ® can be safely applied directly to control weeds 

in channels, drains, streams, rivers, dams etc (http://www.roundupaustralia.info/). 

 

Glyphosate product sales are currently worth approximately US$1,200 million annually 

and represent about 60% of global non-selective herbicide sales (Agrow 1995). In arable 

agriculture in the UK, glyphosate was the 12th most extensively used pesticide active 

ingredient; the 5th most extensively used herbicide by weight with 251 tonnes being 

used; and the 38th most widely applied herbicide, being applied over 334,529 ha annually 

in 1994 (MAFF 1995). In the US nearly 8,500 tonnes was being used on 5-8 million 

hectares annually in the years leading up to 1991 (USEPA 1993). In Canada, Vision® 

(containing 356 g/L of glyphosate as an active ingredient) is a major forest management 

herbicide, representing 81% of all herbicides sprayed on the forests. Because of the aerial 

method of application it can enter aquatic systems. Once in there, its half-life can vary 

from several days to ten weeks depending on the pH of the water (Trotter et al. 1990). 

The Canadian Water Quality Guidelines recommend the IMAC (Interim Maximum 

Accepted Concentration) for protection of aquatic life to be 65 µg/L. However, on 

occasion, glyphosate concentrations were found to be up to 270 µg/L in some Canadian 

water bodies (Morgan and Kiceniuk 1992). 

 

In Australia the recommended maximum level of glyphosate to ensure protection of 99 

and 80% of aquatic freshwater life is 0.37 and 3.6 mg/L respectively (ANZECC and 

ARMCANZ 2000). Though glyphosate is considered to be non-persistent, it can last in 
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the aquatic environment for a considerable time (up to ten weeks) and thus has the 

potential to affect non-target species with a short life cycle, such as cladocerans. Based 

on the scientific data available on glyphosate toxicity to aquatic animals, major 

organizations (USEPA 1993, WHO 1994) conclude that glyphosate and its formulation 

Roundup can be used with minimal risk to the environment. Glyphosate is considered to 

be non-toxic to animals, since they lack the metabolic pathway along which the chemical 

reacts, as the shickimate pathway is found only in plants (Giesy et al. 2000).  However 

some researchers suggest that though glyphosate is not toxic to animals, it still can affect 

them at concentrations found in the environment. For example, Morgan and Kiceniuk 

(1992) observed that at the highest tested concentration of 0.1 mg/L, rainbow trout 

demonstrated a higher frequency of aggressive behaviour; authors reported that this effect 

was observed at concentrations much lower than those found in some water bodies after 

spray application (Trotter et al. 1990). When calculated from the recommended 

application rate (WHO, 1994), glyphosate concentrations can reach 3.9 mg/L of a.i. in 

surface waters. Tate et al. (1997) found that exposure of three successive generations of a 

freshwater snail Pseudosuccinea columella to glyphosate affected the animals’ 

reproduction and development in the third generation at environmentally realistic 

concentrations. 

 

Investigating only one generation of animals may not be adequate to conclude if a 

chemical with low toxicity such as glyphosate has any long-term effect. We investigated 

the effects of sub-lethal concentrations of technical grade glyphosate in two different 



 150  
 
 

media and the glyphosate formulation Roundup Biactive in one medium on three 

successive generations of Daphnia carinata (Cladocera, Crustacea). 

7.1.2 Materials and methods 

 

7.1.2.1 Culture maintenance of daphnids 

 

Detailed description of D. carinata culture maintenance and feeding is described in 

Zalizniak and Nugegoda (2006), and only briefly outlined here. Daphnids were 

maintained individually in their corresponding test medium  - sea salt medium (SSM) for 

the tests in SSM (Barry 1999), and in M4 medium (Elendt and Bias 1990) for M4 tests, 

and fed with green alga Psedokirchneriella subcapitata (formerly Raphidocelis 

subcapitata formerly Selenastrum capricornutum), which was cultured in Keating MS 

medium (Keating 1985). 

 

7.1.2.2 Test chemicals 

 

Two types of glyphosate – technical grade with a concentration of 551 g/L of active 

ingredient, and Roundup Biactive with a glyphosate concentration of 336 g/L were 

obtained from Monsanto (batch # K554 for technical grade glyphosate, and batch # 

728408 for Roundup Biactive). 

 

All concentrations in this study are nominal, expressed as concentrations of the active 

ingredient. 
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7.1.2.3 Media preparation 

 

Two types of media were used for this study: SSM (Barry 1999) for technical grade 

glyphosate (Gly) testing and M4 (pH=8.2±0.2, EC=610 µS/cm) (Elendt and Bias 1990) 

for Gly and Roundup Biactive (RB) testing. SSM is constituted of deionised water with 

0.4 g/L of sea salt (Coralife, scientific grade) and 0.1 g/L of CaCl2  (pH=6.9±0.1, EC=900 

µS/cm).  Both media were vigorously aerated with filtered air for 24 h before use. 

 

7.1.2.4 Experimental protocol 

 

Initially 48-h LC50 values for both herbicides and media types were determined using the 

OECD recommended procedure (OECD 1996). For Gly in SSM, the 48-h LC50 was 150 

mg/L (95% CI could not be calculated). In M4 the values were: for Gly - 341(323-365 

[95% CI]) mg/L and for RB – 98 mg/L (95% CI could not be calculated). Based on these 

results, concentrations of Gly and RB were chosen for the long-term toxicity testing in 

two successive generations of daphnids (in terms of proportion of the corresponding 

LC50): ‘0.01 LC50’, ‘0.05 LC50’, ‘0.1 LC50’, ‘0.5 LC50’ and ‘1 LC50’. For Gly testing in 

SSM the concentrations corresponded to: 0 (control), 1.5, 7.5, 15, 75 and 150 mg/L; for 

testing in M4 they corresponded to: for Gly: 0 (control), 3.5, 17.5, 35, 175, and 350 

mg/L; and for RB: 0 (control), 1, 5, 10, 50 and 100 mg/L. The variable factor in dilution 

series for Gly concentrations was used to cover a broader concentration range. 

Concentrations units were chosen and expressed as proportion of LC50 to evaluate the 

relative toxicity and for ease of comparison of the different results (Zalizniak and 

Nugegoda 2006). 
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Individual culture of D. carinata was chosen as an alternative to the OECD (1996) 

procedure for toxicity experiments (see Zalizniak and Nugegoda (2004) for details). 15 

juvenile females per treatment/control (age <24 hours) were placed individually in 25-mL 

McCartney bottles and exposed for 21 days. Mortality and reproduction parameters were 

recorded daily and daphnids transferred to new treatment media with algae (3.5×105 

cells/cm3), which were prepared daily, just before use. At the end of exposure, body 

length of surviving females (from the top of a crest to the base of a tail-spine) was also 

measured with an eyepiece micrometer under the microscope to the nearest 0.05 mm.  

 

The same protocol was applied to experiments with the second generation of D. carinata. 

On the third or fourth day of reproduction the offspring from the first generation were 

taken for second-generation testing. Depending on the individual females’ start of 

reproduction, the first-, second- and third-brood offspring were combined without 

distinguishing between broods. Thus offspring on the day, when females produced 

enough young to start the second-generation test simultaneously in all treatments, were 

taken for testing. Though it is common practice to take the second or third brood only for 

experiments, Klein (2000) found no differences between the sensitivity of different 

broods to a reference toxicant potassium dichromate. Thus in order to minimize 

experiment duration a mixture of several brood offspring of the age <24 h were used in 

our experiments. The same end-points were observed as for the first generation. 
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Survival and fecundity values were calculated in all experiments and used in the 

computation of the intrinsic rate of natural increase r, which is determined from the 

formula (Lotka 1913):  

Σ lxmxe
-rx

=1, 

where lx is the proportion of individuals surviving to age x, 

mx is the age specific fecundity (number of females produced per 

surviving female at age x), 

x is days. 

 

The second-generation offspring (effectively – the third generation of daphnids) were 

tested using the acute 48-h test protocol (Gly concentration range 0 - 500 mg/L, RB – 0-

250 mg/L) in order to determine if the third generation of daphnids had an altered 

sensitivity to the toxicant. This test was conducted according to OECD guideline for 

testing of chemicals (OECD 1996). Volume of treatment solution was 25 mL for 5 

animals. The LC50 values were determined separately for each pre-exposure 

concentration of Gly in each medium and RB and plotted against these pre-exposure 

concentrations.  

 

7.1.2.5 Statistics 

 

Data were analyzed using analysis of variance (SPSS). The LC50 values were determined 

using PROBIT analysis (SPSS 11.0 for Windows). The data were checked for normality 

and homogeneity for Probit analysis. A one-way ANOVA followed by Dunnett multiple 

comparisons were performed, but the results were inconclusive. However when each 
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treatment was compared pair wise to control using Student t-test for unequal variances 

the differences were evident at P=0.05. The mean value of the intrinsic rate of natural 

increase and its standard error were determined using a jackknife approach as described 

by Taberner et al. (1993). Standard error was used throughout the results unless otherwise 

specified. 

 

7.1.3 Results 

 

7.1.3.1 Sea salt medium 

 

Glyphosate (technical grade) 

First-generation daphnids showed improved performance for all endpoints apart from 

survival in all treatment concentrations except ‘1 LC50’ (Fig. 7.1.1). Though survival in 

this treatment was only 7% after 21-d exposure (Fig. 7.1.1d), time to the first brood was 

significantly shorter (Fig. 7.1.1c) and number of offspring per female was the same as in 

control (Fig. 7.1.1a) resulting in the same r-value as in control (Fig. 7.1.1e).   Animals 

surviving after 21-d exposure were also larger in size in all treatments compared with 

control (Fig. 7.1.1b). 

 

There were inadequate numbers of offspring produced in the first generation in the ‘1 

LC50’ and this treatment was omitted in the second-generation test. Animals in the second 

generation also demonstrated slight improvement in all endpoints for survival, however  
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Figure 7.1.1 Performance of the first generation of D. carinata exposed to different 

concentrations of Gly in SSM. a – number of offspring per female, b – body length 

(mm), c – time to the first brood (days), d – cumulative survival (%), e – intrinsic rate of 

natural increase (day-1) (Mean±SE, N=15). X-axis is concentration of Gly as proportion 

of LC50. Values denoted by the same letter (alphabet) are not significantly different 

(P>0.05). 
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Figure 7.1.2 Performance of the second generation of D. carinata exposed to 

different concentrations of Gly in SSM. a – number of offspring per female, b – body 

length (mm), c – time to the first brood (days), d – cumulative survival (%), e – intrinsic 

rate of natural increase (day-1) (Mean±SE, N=15). X-axis is concentration of Gly as 

proportion of LC50. Values denoted by the same letter (alphabet) are not significantly 

different (P>0.05). 
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in contrast to the first generation, these were mainly in the lowest concentration tested i.e. 

‘0.01 LC50’. Number of offspring per female was significantly higher (Fig. 7.1.2a) and 

time to the first brood significantly shorter (Fig. 7.1.2c) in this treatment compared with 

control, resulting in a higher r-value (Fig. 7.1.2e). All other treatments were the same as 

control or improved only some endpoints (r-value for ‘0.1 LC50’ was also significantly 

higher than in control, and all animals grew bigger than in control (Fig. 7.1.2b)). 

 

The third generation animals showed a trend for increased sensitivity to Gly with 

increased concentration of exposure (Fig. 7.1.3). When third-generation daphnids from 

each exposure concentration were tested in a 48-h acute exposure (concentration of Gly 

ranged from 0 to 250 mg/L), their corresponding 48-h LC50 showed a gradual decrease 

with increase in exposure concentration of the first- and second-generation animals 

(termed pre-exposure concentration (Fig. 7.1.3) to distinguish from the acute test 

exposures). However due to great variations between replicates the differences in LC50 

values for daphnids from each pre-exposure concentration were not statistically different. 

The LC50 value for the 3
rd generation control was also not statistically different from that 

of the original test. 

 

7.1.3.2 M4 medium 

 

Glyphosate (technical grade) 

Gly negatively affected the first generation animals only at the concentration ‘0.5 LC50’ 

where survival and number of offspring per female were lower than in control, thus  
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Figure 7.1.3 48-h LC50 values for the third generation of D. carinata pre-exposed to 

different concentrations of Gly in SSM. Error bars represent 95 % CI. 
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measured in terms of survival of daphnids increased with increase of concentration. 

 

Second generation daphnids showed an increased sensitivity to Gly (Table 7.1.2). The 

number of offspring per female was significantly lower than in control even at the 

lowest concentration tested ‘0.01 LC50’, and that and a longer time to the first brood, 

with the increased mortality compared to control, resulted in a significantly lower r-

value. Since there was not enough offspring produced in the first-generation ‘0.5 

LC50’ exposure, the second-generation exposure in this concentration could not be 

conducted. 

 

The third generation of daphnids from different pre-exposure concentrations did not 

appear to show differences in sensitivity towards Gly - the 48-h LC50 for all 

treatments were not different (Fig. 7.1.4). However, because the LC50 for even those 

pre-exposed as controls was lower (179 mg/L) than the initial LC50 (341 mg/L), we 

cannot draw a valid conclusion from these results.  

 

Roundup Biactive 

In the first generation no concentration of RB showed increased toxicity compared to 

the control, except ‘0.01 LC50’ time to the first brood, which was significantly lower 

than the rest. However when different treatments were compared with each other, ‘0.5 
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Figure 7.1.4 48-h LC50 values for the third generation of D. carinata pre-exposed 

to different concentrations of Gly in M4 medium. Error bars represent 95 % CI. 
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LC50’ showed increased integrated toxicity (as r) compared with all treatments except control 

(Table 7.1.3). Also females were smaller in this treatment compared to ‘0.05 LC50’ and ‘0.1 

LC50’. At concentration ‘0.01 LC50’ time to the first brood was significantly lower that in all 

other treatments including control. Overall, almost all endpoints were seemingly improved at 

intermediate concentrations, with control and the highest concentration falling slightly (and 

not statistically significant) behind. 

 

In the second-generation test there were no differences between endpoints in control and all 

treatments values (Table 7.1.4), but again, as in the first-generation test, the performance of 

animals at ‘0.5 LC50’ concentration was consistently worse than of those at ‘0.01 LC50’ with 

size, time to the first brood and r-value being significantly different. 

 

The third generation did not show any change in sensitivity to RB (Fig. 7.1.5), with all LC50 

values from different pre-exposures not different from each other or the initial value of 98 

mg/L. 

 

7.1.4 Discussion 

 

7.1.4.1 Enhanced performance and effect of growth medium 

 

In the experiment in SSM, first-generation daphnids in all sublethal concentrations and 

second-generation animals in some sublethal concentrations of Gly showed improved 

performance, i.e. hormesis (Fig. 7.1.1 and 7.1.2). Similarly Tate et al. (1997) found 

anomalies in the development of third-generation Pseudosuccinea columella snails following 
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Figure 7.1.5 48-h LC50 values for the third generation of D. carinata pre-exposed to 

different concentrations of RB in M4 medium. Error bars represent 95 % CI. 
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continuous exposure to sublethal concentrations of Gly. The third-generation snails 

developed faster in the Gly concentration 1 mg/L than in control and other treatments. 

Tate et al. (2000) showed that concentrations of five free amino acids were higher in Gly 

treated animals than in control. This confirmed the findings of Thompson (1989) that the 

presence of sublethal concentrations of Gly stimulated significant biochemical and 

physiological responses (including egg laying capacity) in this snail species. Tate et al. 

(1997) hypothesized that Gly may serve as an energy source for these snails, though the 

mechanism of this effect remains unclear. Xi and Feng (2004) reported that in Gly 

concentrations ranging from 4 to 8 mg/L population growth rates of a rotifer Brachionus 

calyciflorus were significantly higher than in control, while a concentration of 2 mg/L did 

not have this effect. The population strategy of rotifers was also influenced by the 

presence of Gly – the females produced more resting eggs in Gly treatments than in 

control. Wojtaszek et al. (2004) reported that at 1.43 mg/L (Expected Environmental 

Concentration [EEC]) of Vision ® (active ingredient Gly) mean growth rates and 

maximum sizes of larvae of two amphibian species were the same or greater than in the 

control. These findings all suggest that there may be a general trend of improved 

performance in different aquatic animal species at low sublethal concentrations of Gly. 

 

However, when daphnids in our study were exposed to Gly in a different type of medium 

(M4) with careful consideration of the presence of different microelements (such as 

selenium, a certain amount of which is essential to daphnids reproduction), a different set 

of results was obtained (Tables 7.1.1 and 7.1.2). Hormesis was not present in any 

generation in the tests with Gly conducted in M4 medium. This indicated that medium 
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composition could influence the toxicity of Gly. Two possible explanations can be 

proposed. If the concentrations of some of the essential microelements in the SSM are 

lower than that required for normal animal performance (e.g. selenium is essential in 

daphnids’ reproduction), and knowing that Gly creates complexes with metals, it is 

possible that improved performance in SSM with Gly relative to control is due to the 

binding of essential elements to Gly and their easier delivery in this form to the animals 

(possibly with food). This hypothesis would explain the absence of hormesis in M4 

medium, where there were no deficiencies in microelements. To check this hypothesis 

another experiment was conducted on the toxicity of cadmium to D. carinata with and 

without the presence of glyphosate (RB), the results of which are presented elsewhere 

(Zalizniak and Nugegoda 2006a). From this experiment we concluded that Gly was 

inducing an improved performance in daphnids, possibly by binding Cd and reducing its 

toxicity, however an improved performance was also observed in M4 medium with 

addition of Gly compared with Gly-free treatment in Cd-free treatments, which does not 

explicitly explain the results. Further studies are required to clarify the mechanism of 

improved performance of daphnids in the presence of Gly. 

 

Wan et al. (1989) found that the toxicity of glyphosate and its formulations depends on 

the type of dilution water used. Overall they found that variation of 96-h LC50 values for 

MON 0818, MON 8709 (surfactants used in Gly formulations) and Roundup® for young 

salmonids was in the same order of magnitude irrespective of water types. For glyphosate 

these values could vary by an order of magnitude depending on water type, with water 

hardness and pH being the most contributing factors. Roundup®, MON 8709 and MON 
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0818 were more toxic to young salmonids in hard than they are in soft waters, while the 

reverse was true for glyphosate (Wan et al., 1989). Folmar et al. (1979) also reported that 

increased temperature and pH both result in an increased toxicity of glyphosate to 

rainbow trout. In our experiments both media were of intermediate hardness types (50-90 

mg/L of total Ca2+ and Mg2+), and their pH values ranged from 8.2 in control to 7.7 in 35 

mg/L of Gly and 7.1 in 50 mg/L of RB, which are in the optimum range for this species 

and should not influence the results in this respect. All researchers who encountered this 

effect agree that the mechanism of hormesis resulting from exposure to Gly is unclear 

and requires further investigation. 

7.1.4.2 Toxicity of glyphosate formulations: active ingredient vs. surfactant 

 

In our experiments RB showed greater than 3 times the toxicity of Gly when tested in M4 

medium (48-h LC50 for RB and Gly were 98 and 341 mg/L of a.i. respectively). A 

number of researchers (Wan et al. 1989, Servizi et al. 1987) indicated that the surfactants 

in Roundup (MON8709 or MON 0818 (part of MON 8709)) are more toxic to aquatic 

flora and fauna than the active ingredient glyphosate. Mitchell et al. (1987) compared 

toxicity values for Rodeo herbicide (active ingredient Gly) alone and for Rodeo herbicide 

with X-77 surfactant as recommended for application by the manufacturer Monsanto. 

They found that 96-h LC50 for rainbow trout exposed to Rodeo/X-77 mixture was about 4 

times lower than when exposed to Rodeo without the surfactant (130 mg/L of active 

ingredient and 580 mg/L respectively). Henry et al. (1994) found the 48-h LC50 value for 

D. magna to be 218 mg/L when exposed to Rodeo herbicide. They also found that the 

surfactant X-77 used in some glyphosate formulations was about 100 times more toxic to 

D. magna than Rodeo (48-h LC50 is 2 mg/L for X-77). In general X-77 Spreader® was 
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83-136 times more toxic than Rodeo when tested using different species of animals 

(Henry et al. 1994). Similarly Folmar et al. (1979) found that glyphosate contributed only 

a small percentage of the toxicity of Roundup® and that the surfactant in the formulation 

was the primary toxic agent. Mann and Bidwell (1999) determined the acute toxicity of 

technical grade glyphosate acid, glyphosate isopropylamine, and three glyphosate 

formulations to adults of one species and tadpoles of four species of southwestern 

Australian frogs in 48-h static/renewal tests. They found that among those tested 

Roundup® herbicide was the most toxic for the tadpoles (between 2.9 and 11.6 mg/L 

glyphosate acid equivalent [a.e.]). Touchdown® herbicide was slightly less toxic (from 

9.0 to 16.1 mg/L a.e.). All other formulations and technical grade glyphosate were 

practically non-toxic. These authors concluded that the surfactants in test formulations 

were the major contributing factor to their toxicity, and they need to be studied further. 

 

7.1.4.3 General comments 

 

Glyphosate-based herbicides are considered to be safe to the environment (aquatic 

included). However they can, as we have demonstrated and discussed, sublethally affect 

aquatic fauna at environmentally  realistic concentrations. Folmar et al. (1979) also found 

that solutions of Roundup aged for up to 7 days in reconstituted water did not change 

toxicity to midge larvae, rainbow trout, or bluegills. These authors concluded that the 

chemical can accumulate to dangerous levels if there are repeated applications within 

short time intervals. 
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Glyphosate binds directly to sediment (Comes et al. 1976, Goldsborough and Beck 

1989). It is expected therefore that in the water column its concentration will be reduced 

(Kilbride and Paveglio, 2001), resulting in lower toxicity to animals. However, Hartman 

and Martin (1984) demonstrated that the presence of suspended sediment in water 

significantly increased the acute toxicity of Roundup to Daphnia pulex (48-h EC50 for 

Daphnia was 3.2 mg/L with suspended sediment and 7.9 mg/L without it). Binding of 

glyphosate to suspended sediment probably results in its increased toxicity to filter 

feeders like cladocerans, and possibly grazers and benthos dwellers would also be 

affected, because they consume benthic sediments with their food. 

 

Though glyphosate is relatively short-lived (half life up to 10 weeks depending on water 

quality), and natural populations of animals are unlikely to experience continuous 

exposure, glyphosate applications often coincide with the onset of the breeding season 

(e.g. in amphibians) thus exposing animals to an annual glyphosate pulse. Mann and 

Bidwell (1999) argued that this can have a cumulative effect, which can be expressed 

only after several generations (and can be inhibitory or stimulatory in a case of 

glyphosate exposure). Though in our experiments with M4 medium daphnids did not 

show increased sensitivity to continuous exposure with Gly and RB, in SSM there was an 

indication of increased sensitivity to Gly in the third-generation tests. Possibly such 

cumulative effects could be more pronounced in environmental communities of animals 

with a distinct seasonal breeding pattern, such as some insects, snails, amphibians or fish. 
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Improved performance, though seemingly beneficial to an animal, can be in fact 

detrimental to communities. We observed (Zalizniak and Nugegoda submitted a) that two 

species of algae showed a significantly increased growth (up to 40% greater than control) 

when exposed to chlorpyrifos at concentrations lethal to D. carinata (Zalizniak and 

Nugegoda 2006). In our study with Pseudokirchneriella subcapitata, it had higher growth 

rates at concentrations 15.6-62.5 mg/L of a.i. than in control, when exposed to both Gly 

and RB. At this concentration of Gly and RB daphnids are negatively affected (Tables 

7.1.1-7.1.4) at least in terms of survival even in well-balanced M4 medium. This 

indicates that the balance in the community can be disrupted. Higher algal growth by 

itself in the presence of Gly can produce algal blooms, and when at the same 

concentrations the animals feeding on algae are negatively affected by the toxicant, it 

enhances the chance of the bloom even further. 

 

In addition exposure to concentrations of a toxicant stimulating growth can result in 

promoting pest species and increased danger to humans. For example increased egg-

laying capacity of P. columella snails (Thompson, 1989) can result in the increased 

abundance of this animal, which is the intermediate hosts for the liver fluke Fasciola 

hepatica. This in turn can lead to the increase of incidences of the infection in humans 

(Tate et al. 2000). 
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7.1.5 Conclusions 

 

Low environmentally realistic concentrations of glyphosate-based herbicides can 

sublethally affect Daphnia carinata. Water quality (in terms of the culture medium) 

modified the toxicity of glyphosate, and in some cases results in an improved 

performance of the animals exposed to low concentrations for several generations. The 

mechanism of the observed hormesis is unclear and requires further investigation. 

Improved performance (especially fecundity) of animal species exposed to low 

concentrations of glyphosate-based products should be taken into account, as it may 

cause changes in community composition due to trophic interactions and competition 

between species with a different response to the toxicant. This in turn could promote pest 

organisms.  

 

 

 



7.2 INVESTIGATION OF THE MODIFYING EFFECT OF 

GLYPHOSATE ON METAL TOXICITY TO DAPHNIA 

CARINATA 

Published as: 

Roundup Biactive modifies cadmium toxicity to Daphnia carinata. 

L. Zalizniak and D. Nugegoda 

Bulletin of Environmental Contamination and Toxicology (2006) 77(5): 648-754 

 

SUMMARY 

 

The modifying effect of glyphosate on the toxicity of cadmium to Daphnia carinata 

was studied in long-term (21 days) exposures in two generations of cladoceran. It was 

found that low concentration of glyphosate (in the form of Roundup Biactive [RB]) 

reduces toxicity of Cd, and the performance of daphnia is enhanced in terms of animal 

size, survival, fecundity, and the intrinsic rate of natural increase in both generations 

of animals exposed in the presence of glyphosate. However when the third generation 

was tested for their sensitivity to Cd in the 48-h LC50 experiments there was no 

difference between RB-free and RB-spiked treatments in pair wise comparisons, 

indicating that no adaptive mechanisms were involved in the enhancement. 

 
 

7.2.1 Introduction 

 

In previous investigations (Zalizniak and Nugegoda submitted b), we found that 

technical grade glyphosate (Gly) in low concentrations (around 5-10% of its 48-h 
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LC50) improved population parameters including number of offspring per female and 

time to the first brood, of Daphnia carinata in sea salt medium (SSM from Barry 

1999), but not in the balanced M4 medium specially designed for daphnids (Elendt 

and Bias 1990). It is known that Gly complexes metals (Subramanian and Hoggard 

1988, Wang et al. 2004) by binding them to one of its three chemical groups - amine, 

carboxylate and phosphonate (Pearson 1963). Artificial sea salt could lack an 

available form of some essential elements, for example, selenium, which has 

previously been identified as the most likely cause of daphnids’ long-term poor 

reproduction performance in our earlier experiments in long-term culture. Because we 

did not observe an improved performance in the balanced M4 medium, we speculate 

that Gly in SSM facilitates the delivery of essential elements, resulting in better 

performance of the animals in low concentration Gly treatments compared with 

control. To test this hypothesis we investigated the effects of cadmium, which is 

highly toxic to daphnids, alone and with the addition of a low concentration (5 mg/L) 

of a Gly-based herbicide Roundup® Biactive (RB).  

 

7.2.2 Materials and methods 

 

7.2.2.1 Culture maintenance of daphnids 

 
A detailed description of D. carinata culture maintenance and feeding is provided in 

Zalizniak and Nugegoda (2006), and only briefly outlined here. Daphnids were 

maintained individually in M4 medium (Elendt and Bias 1990), and fed with green 

alga Pseudokirchneriella subcapitata (formerly Raphidocelis subcapitata formerly 

Selenastrum capricornutum), which was cultured in Keating MS medium (Keating 

1985). 
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7.2.2.2 Test chemicals 

 

Roundup® Biactive with a Gly concentration of 336 g/L was obtained from Monsanto 

(batch # 728408). All concentrations are nominal, expressed as concentrations of the 

active ingredient.  

 

Cadmium chloride CdCl2·2.5H2O (Sigma) was used for Cd exposures. To ensure that 

Cd concentration was maintained at nominal level, stock solution concentration was 

occasionally measured with a Flame Atomic Absorption Spectrophotometer. It was 

found to be within 5% of the nominal (10 mg/L) for the duration of the experiment, 

therefore nominal concentrations were used throughout the study. 

 

7.2.2.3 Experimental protocol 

 

Initially the 48-h LC50 for Cd was determined in acute toxicity tests (OECD 1996) 

with four replicates of 5 animals (20 total) in each exposure concentration (volume 

per 5 animals was 25 mL). Concentrations of Cd used were 50, 100, 250, 500, 600, 

700, 800, 900, 1000, 1100, 1200 and 1300 µg/L. The LC50 was determined to be 899 

(95% CI 851-947) µg/L of Cd. Based on this result, five concentrations of Cd (in 

terms of proportion of the 48-h LC50) were chosen for the long-term (21 days) 

toxicity tests using two successive generations of daphnids: ‘0.01 LC50’ (or 9 µg/L), 

‘0.05 LC50’ (45 µg/L), ‘0.1 LC50’ (90 µg/L), ‘0.5 LC50’ (450 µg/L) and ‘1 LC50’ (900 

µg/L). To test our hypothesis the concentration of RB where daphnids demonstrated 

an improved performance in our previous experiments – 5 mg/L  (Zalizniak and 

Nugegoda submitted b) was added to another set of Cd exposures and also tested 
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using two successive generations of D. carinata. Concentrations units were chosen 

and expressed as proportion of the LC50 of Cd to evaluate the relative toxicity and for 

ease of comparison of the different results (Zalizniak and Nugegoda 2006). 

 

Individual culture of D. carinata was chosen as an alternative to the OECD (1996) 

procedure (which requires testing of cohorts) for toxicity experiments (see Zalizniak 

and Nugegoda (2004) for details). 15 juvenile females per treatment/controls (age <24 

hours) were placed individually in 25-ml McCartney bottles and exposed for 21 days. 

Mortality and reproduction parameters were recorded daily and daphnids transferred 

to new treatment media with algae (3.5×105 cells/mL), which were prepared daily, 

just before use. At the end of exposure, body length of surviving females (from the 

top of the crest to the base of a tail-spine) was also measured with an eyepiece 

micrometer under the microscope to the nearest 0.05 mm.  

 

The same protocol was applied to experiments with the second generation of D. 

carinata. On the third or fourth day of reproduction the offspring from the first 

generation were taken for second-generation testing. Depending on the individual 

females’ start of reproduction, the first-, second- and third-brood offspring were 

combined without distinguishing between broods. Offspring for the second-

generation test were taken on the day when females produced enough young to start 

testing simultaneously in all treatments. Though it is a common practice to take the 

second or third brood only for experiments, Klein (2000) found no differences 

between the sensitivity of different broods to a reference toxicant potassium 

dichromate. Thus, in order to minimize the duration of the experiment, a mixture of 

several brood offspring of the age <24 h were used in our experiments. Offspring 
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from daphnids exposed to 0.01 LC50 (Cd) in the first generation were exposed to 0.01 

LC50 (Cd) in the second generation and so on for each treatment. The same end-points 

were observed as for the first generation. 

 

Survival and fecundity values were calculated in all experiments and used in the 

computation of the intrinsic rate of natural increase r, which is determined from the 

formula (Lotka 1913):  

Σ lxmxe-rx=1, 

where lx is the proportion of individuals surviving to age x, 

mx is the age specific fecundity (number of females produced per 

surviving female at age x), 

x is days. 

 

The second-generation offspring (effectively – the third generation of daphnids) from 

all exposures were tested using the acute 48-h test protocol to determine if their 

sensitivity to Cd changed because of exposure of their parents and to compare the 

results from two sets – Cd exposure only and with addition of RB. Cd concentration 

range in this 48-h exposure was 500-1000 µg/L.  This test was conducted according 

to OECD guideline for testing of chemicals (OECD 1996). The volume of treatment 

solution was 25 ml for 5 animals. The LC50 values were determined separately for 

each pre-exposure concentration of Cd only and Cd+RB and plotted against these pre-

exposure concentrations.  

 

All tests were conducted at room temperature (21±1oC), photoperiod 16 hours day:8 

hours night. Water quality parameters for M4 medium are: total hardness 2.5 mmol/L, 
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alkalinity 0.9 mmol/L, conductivity 610 µS/cm, pH=8.2±0.1. The M4 medium is 

buffered, so the addition of acidic RB did not change the pH of exposure solutions. 

 

7.2.2.4 Statistics 

 

Data were analysed using analysis of variance with the SPSS® 11.0 computer 

package. The pairwise comparisons of the values with and without RB in long-term 

experiments were performed using t-test assuming unequal variances (SPSS®). The 

LC50 values were determined using PROBIT analysis (SPSS®). The mean value of the 

intrinsic rate of natural increase and its standard error were determined using a 

jackknife approach as described by Taberner et al. (1993). Standard error was used 

throughout the results unless otherwise specified. 

 

7.2.3 Results 

 

7.2.3.1 First generation sublethal toxicity testing 

 

In first generation ‘1 LC50’ exposures for both Cd and Cd+RB all daphnids died by 

day 6 before they started to reproduce. In ‘0.5 LC50’ Cd only exposure animals died 

by day 14 without reproducing, and in Cd+RB by day 16 after producing a few 

offspring. Since death limited the data for these exposure concentrations, the results 

for these are not presented. Combined results for the first generation of D. carinata 

are presented in Table 7.2.1. The control (‘0’ Cd treatment) animals performed better 

when a small amount of RB was added. Though the survival and time to the first 

brood were not significantly different, the animals were bigger and the number of 
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offspring was greater in RB spiked control, the latter resulting in a higher r-value 

(Table 7.2.1). The results for ‘0.01 LC50’ and ‘0.05 LC50’ did not show much 

difference in pairwise comparisons, except that in ‘0.05 LC50’ survival and size of 

animals were greater in RB spiked treatments compared to those in RB-free. 

However, it did not affect their overall performance (the r-values are not statistically 

significantly different, Table 7.2.1). Surprisingly, the results for ‘0.1 LC50’ are the 

same as for ‘0’ treatment with even greater differences between RB-spiked and RB-

free exposures (P<0.00001). 

 

7.2.3.2 Second generation sublethal toxicity testing 

 

The second-generation results followed similar trend as the first one. The control 

animals performed better in RB-spiked exposure in terms of size, number of offspring 

per female and time to the first brood, resulting in a higher r-value (Table 7.2.2). 

Unlike the first generation, the second generation did not show any differences 

between RB-free and RB-spiked in ‘0.1 LC50’ exposures for observed endpoints, 

however, the resulting difference for r-value was significant in pairwise comparisons 

(Table 7.2.2). At concentration ‘0.05 LC50’ (Table 7.2.2) all endpoints were 

significantly ‘better’ in RB-spiked exposure, indicating that animals of the second 

generation respond at a lower concentration of cadmium if the media is spiked with 

RB. 
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Table 7.2.1 Response of the first generation of D. carinata exposed for 21 days to different concentrations of Cd only and with addition 

of 5 mg/L of RB. (Mean±SE, N=15). Here and in all tables, different superscripts denotes values that are significantly different 

from each other (P<0.05) in a pair wise comparison (without RB-with RB).  

 
Cd exposure concentration (proportion of LC50) Endpoint 

0        0+RB 0.01 0.01+RB 0.05 0.05+RB 0.1 0.1+RB
Time to the 1st brood (days)         8.3±0.2 8.4±0.2 8.3±0.2 8.3±0.2 8.3±0.2 8.1±0.1 8.5±0.2 8.3±0.2

Body length at day 21 (mm) 4.00a±0.14       4.30b±0.05 4.26±0.04 4.19±0.06 3.95a±0.04 4.13b±0.03 3.55a±0.16 3.86b±0.05 

Number of offspring per female 78a±5       104b±7 75±8 76±7 63±5 76±5 31a±4 65b±4 

Cumulative survival (%)          80 80 87 87 53 80 67 73

Intrinsic rate of natural increase, (day-1)        0.311a±0.009 0.330b±0.006 0.311±0.007 0.317±0.008 0.307±0.008 0.318±0.006 0.226a±0.013 0.308b±0.007 
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Table 7.2.2 Response of the second generation of D. carinata exposed for 21 days to different concentrations of Cd only and with 

addition of 5 mg/L of RB. (Mean±SE, N=15).  

 
Cd exposure concentration (proportion of LC50) Endpoint 

0        0+RB 0.01 0.01+RB 0.05 0.05+RB 0.1 0.1+RB
Time to the 1st brood (days) 9.3a±0.3        8.3b±0.2 8.6±0.2 8.7±0.3 9.2a±0.3 8.3b±0.2 9.0±0.3 9.6±0.6

Body length at day 21 (mm) 4.03a±0.03        4.13b±0.03 4.01±0.04 4.08±0.05 3.93a±0.03 4.02b±0.04 3.73±0.03 3.64±0.13

Number of offspring per female 80a±4        98b±4 68±6 76±6 63a±5 78b±4 33±4 41±6

Cumulative survival (%)          87 93 87 93 80 100 93 80

Intrinsic rate of natural increase, (day-1)        0.293a±0.010 0.317b±0.008 0.289±0.009 0.304±0.007 0.270a±0.011 0.312b±0.006 0.217a±0.011 0.271b±0.009 
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7.2.3.3 Third generation acute testing 

 

There were no differences between 48-h LC50 in RB-spiked and RB-free Cd exposures 

(Table 7.2.3). Though the values were higher for Cd only pre-exposed animals than 

for animals pre-exposed to RB-spiked Cd treatments (except in ‘0.1 LC50’), the 

differences were insignificant in all cases (tested with Fisher-Bonferroni adjustments). 

 

7.2.4 Discussion 

 

Based on the results of chronic sublethal exposures of two generations of D. carinata 

to RB-spiked and RB-free Cd treatments we conclude that addition of a small amount 

of RB (5 mg/L) reduces the toxicity of Cd to D. carinata (Table 7.2.1 and 7.2.2) 

contrary to our original hypothesis. In first generation exposures both ‘0’ Cd 

treatment animals and those in ‘0.1 LC50’ (and in some cases in ‘0.05 LC50') showed 

improved performance in RB-spiked Cd treatments compared with RB-free. 

Surprisingly, the lowest Cd treatment of ‘0.01 LC50’ did not show any improvement 

in RB-spiked exposures – values for all endpoints were practically identical in 

pairwise comparisons. The greatest differences were observed in ‘0.1 LC50’ for 

number of offspring per female (P=0.000004) resulting in a large difference in the 

intrinsic rate of natural increase, suggesting that the number of offspring was the main 

factor contributing to the difference in r-value. 

 

Similar to the first generation, the second-generation animals also demonstrated 

hormesis in ‘0’ Cd treatment (all endpoints). However, contrary to the first, the 

improved performance in RB-spiked treatments shifted towards a lower Cd 
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Table 7.2.3 Third-generation 48-h LC50 (µg Cd/L) for animals, whose parents 

and grandparents were exposed to different concentrations of Cd 

and Cd+RB.  Mean with 95% CI in brackets, N=4. 

 
Pre-exposure 

concentration 

(proportion of the initial 

Cd LC50) 

Cd only Cd+RB 

0 595 (537-639) 577 (512-621) 

0.01 552 (481-598) 546 (483-587) 

0.05 593 (376-753) 542 (396-638) 

0.1 401 (256-499) 408 (221-525) 
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exposure of ‘0.05 LC50’ (Table 7.2.2). All endpoints indicated presence of hormesis at 

‘0.05 LC50’ Cd concentration in RB-spiked treatments compared with RB-free. It is 

worth noting that the differences were not as great as in the first generation. Our 

results suggest that with the increase of time (generation) of exposure, hormesis 

becomes less pronounced, however it still can be detected, though at a lower exposure 

concentration. Judging from this trend it is possible that with further exposure (for 

several more generations) hormesis could be eliminated altogether. This is perhaps 

reflected in the results of the third-generation toxicity testing. The 3rd generation RB-

free and RB-spiked treatments did not show any differences in 48-h LC50 at any given 

Cd concentration (Table 7.2.3), indicating that at least in terms of survival there was 

no hormesis present. This might indicate that whatever advantage was given to the 

first and second generations by Gly addition did not last till the third generation. 

However this hypothesis requires further testing.  

 

Tsui et al. (2005) studied the change in acute (48-h) toxicity of several heavy metals 

to Ceriodaphnia dubia in the presence of Gly. They found that the toxicity of Cd (as 

well as 6 other metals) was reduced in the presence of 2.88 mg/L of Gly (for Cd the 

reduction was 48% of the initial Cd toxicity). Gly clearly lowered the availability of 

Cd to daphnia. The authors explained this as due to the formation of insoluble metal 

complexes of Gly in hard waters and thus their reduced bioavailability. This was also 

confirmed in our long-term study, when the toxicity of Cd (provided in solution as 

Cd2+) was lower in the presence of RB for some endpoints and Cd concentrations. 

However it does not explain the enhanced performance of daphnids when no Cd was 

added but RB was (control). Tsui et al. (2005) also reported that Se toxicity did not 

change with Gly addition, and mortality was 100% in both exposures with or without 
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Gly present. Because they used relatively high concentrations of Se (1.6 mg/L) to 

cause 100% mortality, it is not known if the result would be the same at low 

concentrations of Se. At low concentration of Se exposure it might be that with Gly 

present, the toxicity of Se could be altered. Alternately if Gly enhances the uptake of 

some essential elements when they are low/deficient in the solution, Gly may be 

beneficial to daphnids. This could be one possible explanation for the enhanced 

performance of daphnids in the presence of Gly without Cd in our experiments. Tsui 

et al. (2005) also measured Ag and Hg accumulation in C. dubia after 4-h exposure to 

metals with and without the addition of Gly. They found that with 100nM of Gly 

present there was a decrease in both metals in the solution, however uptake by the 

animals was only detected for Hg exposure, but not for Ag. Our results on reduction 

in Cd toxicity in the presence of Gly indicate that Cd uptake was possibly reduced in 

the presence of Gly similar to Ag. This suggests that different metals react differently 

with Gly, and need to be studied individually for changes in their toxicity in the 

presence of Gly. 

 

The effect of Gly can have environmental implications when metal pollution is also 

an issue. Some metals (such as Cd) can have their availability reduced, but uptake of 

some (Hg) increases. Mercury uptake into aquatic organisms (fish in particular) is 

already at undesirably high levels, and this in turn can affect their consumers’ health, 

including humans. Gly can also bind to the substrate, and its accumulation with later 

release can potentially increase Gly load in the environment. Though Gly is a 

herbicide, it is nevertheless toxic to some aquatic animals at environmentally realistic 

concentrations (Relyea 2005, Relyea et al. 2005). 
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CHAPTER 8 

HORMESIS: FACTS, MODEL AND DISCUSSION 

 

8.1 A DEFINITION AND BRIEF HISTORY OF HORMESIS 

 

Hormesis (earlier known as Arndt-Schultz law) is defined in the On-line Medical 

Dictionary (http://cancerweb.ncl.ac.uk) as an effect where a toxic substance acts like a 

stimulant in small doses, but as an inhibitor in large doses. This effect was observed 

through the ages with small doses of poisons, and Paracelsus wrote in the 16th century 

that many substances, which are toxic, may be beneficial in small amounts (Stebbing 

1982). 

 

The classical and simplest case of a dose-response (or concentration-response) 

relationship is depicted in Fig. 8.1, where up to a certain level (threshold) there is no 

adverse effect, after which there is a direct correlation between dose (concentration) 

and inhibition effect of the toxicant till the death of the organism occurs. When 

hormesis is present, the shape of the dose-response curve changes to a so-called β-

curve (Fig 8.2) (Stebbing 1982, Calabrese and Baldwin 1993, 1997), where the 

response (e.g. growth) to the toxicant at low doses is greater than that of control.  

 

Calabrese and Baldwin (1998a) analysed earlier reports on hormesis in a 

comprehensive summary. They indicated that among the reviewed studies of a broad 

range of chemical classes the most prevalent biological endpoints were growth 

responses (see also Stebbing 1982), followed by metabolic effects, longevity (see also 
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Figure 8.1 General case of a dose-response relationship of a toxic (non-

carcinogen) agent. 
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Figure 8.2 The β dose-response curve showing hormesis.  
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Boxenbaum 1994), reproductive responses, and survival. As a result of their analysis 

they concluded that hormesis is a widely observed phenomenon (starting with Schultz 

experimenting with yeasts in 1888, followed by Hueppe in 1896 with bacteria, and 

then later studies in the 20th century), yet it is not always reported for various reasons. 

Such reasons include:  

1. inappropriate study design, where only a few concentrations are tested, and 

therefore definite conclusions regarding presence of hormesis cannot be made;  

2. general perception of unimportance of beneficial (hormetic) effects in 

toxicological studies, where usually adverse effects are noted and discussed; 

and  

3. lack of an explicit mechanistic explanation of hormesis. 

 

8.2 PROPOSED MECHANISMS OF HORMESIS  

 

The evolution of thinking how and why hormesis works took place mostly in the 20th 

century. After the initial discovery of the stimulating effects of then new antibiotics 

(Miller at al. 1945, Luckey 1956) and synthetic pesticides at low doses 

(concentrations) (Luckey 1968), there were numerous confirmations of hormesis with 

yet other new products (see Stebbing 1982), or even with substances previously 

thought to be without a toxicity threshold, such as some carcinogens (Portier and Ye 

1998, Cohen 1995, Andersen and Conolly 1998). In each case, especially in earlier 

studies, the explanation of a hormesis mechanism (as in this thesis Chapters 5, 6 and 

7) was given, or at least attempted, with respect to each particular toxicant and its 

biochemical effects on a tested organism. With the growing number of reported 

instances of hormesis for a wide range of biological endpoints and with the wide 
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range of chemicals representing different chemical groups, there emerged a tendency 

to generalize this phenomenon (Hayes 1975). Stebbing (1998) proposed a hypothesis 

that “hormesis is the cumulative consequence of transient and sustained over-

corrections by rate-regulating control mechanisms to low levels of inhibitory 

challenge.” However, he acknowledges (since he was only discussing growth 

hormesis), that it is not clear how this can explain other types of hormesis. Calabrese 

(1999) experimentally confirmed that growth hormesis represents an 

overcompensation to a disruption in homeostasis. 

 

8.3 DISCUSSION OF THE RESULTS OF THE CURRENT 

PROJECT WITH RESPECT TO HORMESIS 

 

The initial objective of the current project was to investigate the effects of low 

sublethal concentrations of commonly used pesticides, mostly their toxicity at low 

levels on non-target organisms. However, when results were examined, an interesting 

trend emerged, where at low concentrations, practically no adverse effect producing 

concentrations, of Gly and CPF, the investigated organisms improved their 

performance, i.e. hormesis was observed. First it was interpreted as a one off result, 

but with the continuation of the study, more evidence was collected that this was a 

rather common response of the organisms to the low concentrations of chemicals in 

question. Summarising the results of the current project with respect to observed 

hormesis I conclude that: 

1. When exposed to CPF both species of algae exhibited hormesis at 

environmentally realistic concentrations (around 0.5-1% of EC50). 
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2. When exposed to Gly and RB the alga P.  subcapitata exhibited hormesis at 

environmentally realistic concentrations (around 4-7% of EC50).  

3. When exposed to CPF, daphnids showed hormesis for time to the first brood 

(both first and second generations), and number of offspring per female 

(second generation) at low, environmentally realistic concentrations, however 

the third generation demonstrated an increase in sensitivity to CPF with the 

increase of the pre-exposure pesticide concentration, i.e. the 48-h LC50 of the 

animals from the higher pre-exposure concentration was lower than those from 

the lower pre-exposure concentration. 

4. When tested with Gly in different types of media there was hormesis present 

in daphnids cultured in sea salt water but there was no indication of hormesis 

in M4 medium, suggesting that improved performance in exposures to this 

chemical is dependent on media type. Similarly no hormesis was observed 

initially in daphnids cultures exposed to RB in M4 medium.  

5. When Daphnia were exposed to low concentration of cadmium in the 

presence of RB in M4 medium, the toxicity of Cd to at least one endpoint was 

reduced in almost all Cd treatments. Also Daphnia showed improved 

performance in RB Cd-free treatments compared to control, contrary to the 

results of the previous experiments. Clearly these contradictory results require 

more studies on the subject of RB-induced hormesis. 

 

In almost all experiments improved performance in algal and Daphnia cultures was 

observed. This suggests (together with numerous examples in literature) that this 

effect has a common underlying cause, suggestive of a defence response to the 

toxicant exposure. However, as the experiment with Cd and RB indicated, some 
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chemicals can reduce the toxicity of another, while simultaneously having a 

stimulatory effect on the organism exposed to them (see Chapter 7.2) 

 

Hormesis may be regarded as a beneficial effect for an organism; after all it often 

results in a larger size and the ability to produce more offspring, as observed in this 

project and other studies. However, when subsequent generations were exposed to the 

same concentrations of chemicals, the advantage is reduced (as in the study of 

Daphnia and Gly), or even eliminated completely. For example in the case of 

Daphnia exposed to CPF, the third generation animals, whose parents and 

grandparents were also exposed to CPF, showed increased sensitivity towards CPF, 

i.e. greater toxicity observed in pre-exposed animals. The same concentration, which 

produced hormesis in the first and second generations, produced greater toxicity in the 

third (see Chapter 6). 

   

There was no hormesis observed in acute short-term exposures to the chemicals 

studied here, however it is quite common to have hormesis present in such exposures 

(Calabrese and Baldwin 1997). Van Ewijk and Hoekstra (1993) and later Enserink 

and Van der Hoeven (1993) discussed the importance of inclusion of hormetic data 

into calculation of LC50 values. Usually the LC50 is calculated ignoring or discarding 

data that do not fit into a logistic model. Ignoring data gives lower LC50 

(overestimation of toxic effect), and discarding - much higher values (underestimation 

of toxicity), while a proposed linear logistic model gives an intermediate, more 

realistic LC50 (Enserink and Van der Hoeven 1993).  This new approach is important 

in setting goals for environmental concentrations of toxicants, as it changes the LC50 

values, and consequently, calculated trigger values for the acute and chronic 
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environmental exposures based on LC50. However, hormesis at sublethal 

concentrations should not be ignored. The results of the current project suggest that 

population characteristics can be affected at low environmentally realistic 

concentrations of at least some toxicants. Though these effects are not considered 

adverse for the organisms tested, they can tip the balance of a community, for 

example, potentially producing algal blooms, or create a surge in a population 

numbers of species – disease carriers (mosquitoes, snails). Chapman (1998) argued 

for the consideration of multiple working hypotheses to explain such complex 

phenomena as hormesis and essentiality of chemicals, and warns about the danger of 

favouring one particular theory.  

 

Agricultural pesticide use remains high, and resurgence of pest insects and secondary 

pests outbreaks are commonly observed following insecticide application, and lately 

more attention is given to the hormesis effect in target organisms in pesticide 

applications (Morse 1998). In order to compensate for hormesis in such cases, a 

greater dose of a pesticide would be required to be effective in eliminating a pest 

organism, leading to the increased burden of this pesticide in the environment. This 

increased burden may coincide with the concentrations that produce hormesis in non-

target organisms. Bailer and Oris (1998) argue, that if hazard identifications are 

carried out at low levels of this hazard (for example, in field settings), only 

stimulatory effects of a chemical might be observed resulting in a false negative error. 

This in turn can create additional difficulties in deriving trigger values for chemicals 

and setting goals for water quality criteria. Lately there was a call to incorporate 

hormesis in routine testing of hazards (Bailer and Oris 1998) in order to provide for 

its regulatory implications (Calabrese and Baldwin 1998b, Foran 1998) as more data 
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on hormesis becomes available. Because hormesis in one generation is not necessarily 

carried on to the next generations, but in fact can be reversed (as the current project 

indicated), more laboratory studies are needed on multiple-generation long-term 

toxicity assessments.  There should however, also be a careful comparison of field 

and laboratory data. The laboratory exposures are usually drastic, while organisms in 

the wild are under constant stress, hence the differences between datasets (Chapman, 

1998). Relying exclusively on laboratory data in setting environmental goals must be 

avoided; but to underestimate the importance of finely tuned laboratory experiment is 

equally dangerous, as they provide information otherwise unavailable from field 

observations only. 
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APPENDICES 

APPENDIX 1 

PESTICIDES INFORMATION 

 

Glyphosate 

Chemical name: N-(phosphonomethyl)glycine 

Chemical family: organophosphorus 

Molecular formula: C3H8NO5P 

Molecular weight: 169.08 

Corrosiveness:  corrosive to iron and galvanised steel 

Solubility: in water at 25oC, 12 g/L. The alkali metal and amine salts are readily 

soluble in water. Insoluble in most organic solvents. 

Mode of action: Non-selective systemic herbicide, absorbed by the foliage, with rapid 

translocation throughout the plant. Glyphosate inhibits the enzyme 5-

enolpyruvyl shikimate-3-phosphate synthase thereby preventing the 

biosynthesis of aromatic amino acids. The shikimate pathway is the 

biosynthetic rout to the aromatic amino acids tryptophan, tyrosine and 

phenylalanine as well as a large number of secondary metabolites such as 

flavonoids, anthocyanins, auxins and alkaloids. Glyphosate is a post-

emergence herbicide and has been shown to be translocated in the plant’s 

phloem to meristematic tissue, underground storage organs and stem 

apices. It has no pre-emergence activity. Glyphosate forms comptex with 

metal ions. Metal ion-complexing capacity of glyphosate:metal ions 

strongly influence glyphosate absorption and translocation and vice versa; 

however it is not known if glyphosate has a significant effect on 
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intracellular distribution and availability of metal ions. Glyphosate also 

stimulates the formation of total nitrogen (mineralization of N). 

Uses: Control of a great variety of annual, biannual, and perennial grasses, sedges, 

broad-leaved weeds, and woody shrubs. Used in fruit orchards, vineyards, 

conifer plantations, and many plantation crops (e.g. coffee, tea, bananas, 

rubber, coconut, palms, cocoa, mangoes); post-weed emergence but pre-

crop-emergence in a wide range of crops (including vegetables, beet, 

lucerne, okra, soya beans, figs, kiwi fruit, olives, cucurbits, cereals, cotton, 

etc.); on non-crop arrears; immediately pre-harvest in ripened cereals; in 

cereal stubble; and in pasture renovation. Also used for pre-harvest 

desiccation of cotton, cereals, peas, beans, etc.; for destruction of rye sown 

to prevent wild erosion of the soil; for control of suckers on fruit trees; and 

for aquatic weed control. 

Degradation and metabolism:  

 Environmental: Strongly adsorbed to soil. Microbial degradation is the 

major cause of loss from soil, with liberation of carbon dioxide. Half-life 

in soil is normally less than 60 days. Half-life in pond water from 12 days 

to 10 weeks. 

 In plants: Glyphosate is not metabolised in plants. 

 

 

 

 

 

 

 225



Chlorpyrifos 

Chemical names: O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate (IUPAC) 

       O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl phosphorothioate (CA) 

Chemical family: organophosphorus; pyridine 

Molecular formula: C9H11Cl3NO3PS 

Molecular weight: 350.62 

Corrosiveness:  corrosive to copper and brass 

Stability: Stable in neutral and weakly acidic media. Hydrolysed by strong alkalis. 

Solubility: in water at 25oC, ca 2 mg/L. In Benzene 7900, acetone 6500, chloroform 

6300, carbon disulphide 5900, diethyl ether 5100, xylene 4000, 

dichloromethane 4000, isooctane 790, methanol 450 (all in g/kg at 25oC). 

Mode of action: Non-systemic insecticide with contact, stomach, and respiratory 

action. Cholinesterase inhibitor. 

Uses: Control of soil insects and some foliar insect pests on a wide range of crops, 

including pome fruit, stone fruit, nut crops, strawberries, figs, bananas, 

vines, vegetables, potatoes, beet, tobacco, soya beans, sunflowers, sweet 

potatoes, ground nuts, rice, cotton, lucerne, cereals, maize, sorghum, 

asparagus, glasshouse and outdoor ornamentals, mushrooms, turf, and in 

forestry. Control of insect pests in stored products, household insect pests 

(including ants and cockroaches), flies and other insects in animal houses, 

and mosquitoes (adults and larvae). Also used as an animal 

ectoparasiticide. 

Degradation and metabolism:  
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 Environmental: In soil, chlorpyrifos is slowly degraded, with a half-life of 

ca. 80-100 days, to 3,5,6-trichloro-2-pyridinol, which is subsequently 

degraded to organochlorine compounds and carbon dioxide. 

 In animals: In rats, dogs and other mammals, following oral 

administration, rapid metabolism occurs, with the principal metabolites 

being 3,5,6-trichloro-2-pyridinol and monoethyl chlorpyrifos. Excretion is 

principally in the urine. 
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APPENDIX 2 

MEDIA RECIPES 

Tamiya medium for algae (Vasser 1989) 

KNO3     5 g/L 
KH2PO4    1.25 g/L 
MgSO4·7H2O    2.5 g/L 
Disodium EDTA   37 mg/L 
Fe solution (x1000)   1 mL 
Microelements solution (x10)  0.3 mL 
 
Fe solution (concentrated 1000 times) 
 
FeC6H5O7    25 g/L  or 
FeSO4·7H2O    3 g/L 
 
Microelements solution (concentrated 10 times) 
 
H3BO3     28.6 g/L 
MnCl2·4H2O    18.1 g/L 
ZnSO4·7H2O    2.22 g/L 
NH4VO3    0.23 g/L 
MoO3     0.18 g/L or 
Na2MoO4·2H2O   0.30 g/L 
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Keating medium for algae (Keating 1985) 

“M” solution 
 
Disodium EDTA  5 mg/L 
H3BO3    5.7 mg/L 
FeCl3·6H2O   1.2 mg/L 
MnCl2·4H2O   0.7 mg/L 
LiCl    0.6 mg/L 
RbCl    0.1 mg/L 
SrCl2·6H2O   0.3 mg/L 
NaBr    0.06 mg/L 
Na2MoO4·2H2O  0.1 mg/L 
CuCl2·2H2O   0.067 mg/L 
ZnCl2    0.052 mg/L 
CoCl2·6H2O   0.020 mg/L 
KI    0.006 mg/L 
SeO2    0.0014 mg/L 
NH4VO3   0.0011 mg/L 
 
“S” solution 
 
Glycylglycine (buffer) 250 mg/L 
NaNO3    150 mg/L 
CaCl2·2H2O   38 mg/L 
MgSO4·7H2O   20 mg/L 
Na2SiO3·9H2O   145 mg/L 
KCl    10 mg/L 
K2HPO4   10 mg/L 
KH2PO4   25 mg/L 
 
Vitamins 
 
B12    1 µg/L 
Biotin    0.75 µg/L 
Thiamine (HCl)  75 µg/L 
 
Concentrated (x6) solutions “M” and “S” can be made separately and later combined 

to make up Keating (A-MS) algal medium (pH=8.5 before autoclaving, 7.75 – after). 
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M4 medium for daphnia 

“A” solution (concentrated 2000 times) 
 
Disodium EDTA    5000 mg/L 
FeSO4·7H2O     1991 mg/L 
H3BO3      5719 mg/L 
MnCl2·4H2O     721 mg/L 
LiCl      612 mg/L 
RbCl      142 mg/L 
SrCl2·6H2O     304 mg/L 
NaBr      32 mg/L 
Na2MoO4·2H2O    126 mg/L 
CuCl2·2H2O     33 mg/L 
ZnCl2      26 mg/L 
CoCl2·6H2O     20 mg/L 
KI      6.5 mg/L 
Na2SeO3     4.38 mg/L 
NH4VO3     1.15 mg/L 
 
“B” solution (concentrated 100 times) 
 
CaCl2·2H2O     29.38 g/L 
MgSO4·7H2O     12.33 g/L 
KCl      580 mg/L 
MaHCO3     6.48 g/L 
 
“C” solution (concentrated 1000 times) 
 
Na2SiO3·9H2O     1 g/L 
NaNO3      27.4 mg/L 
K2HPO4     18.4 mg/L 
KH2PO4     14.3 mg/L 
 
Vitamins (concentrated 1000 times) 
 
Thiamine (HCl)    75.0 mg/L 
B12      1.0 mg/L 
Biotin      0.75 mg/L 
 
Solutions A-C prepared individually with Milli-Q water. Vitamins solution can be 

stored frozen. 

Total hardness of the medium is 2.5 mmol/L, alkalinity 0.9 mmol/L, conductivity 610 

µS/cm, pH=8.2±0.2. 
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